183 research outputs found

    An in silico Trial of X-rays vs Carbon Ions in Lung Cancer Radiosurgery

    Get PDF

    Messenger RNA expression of transporter and ion channel genes in undifferentiated and differentiated Caco-2 cells compared to human intestines.

    Get PDF
    PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially

    Localized gut-associated lymphoid tissue hemorrhage induced by intravenous peptidoglycan-polysaccharide polymers.

    Get PDF
    A hemorrhage into gut-associated lymphoid tissue developed as early as 3 min after the intravenous injection of group A streptococcal peptidoglycan-polysaccharide polymers into rats. Extravasated erythrocytes were specifically located in the lamina propria and organized lymphoid follicles of the intestines and mesenteric lymph nodes and did not occur in the lungs, kidneys, liver, spleen, adrenal glands, or submandibular and popliteal lymph nodes, as determined by gross and histologic observations and measurement of radiolabeled erythrocytes. Petechial hemorrhage was preferentially located within the intestine to the distal ileum, Peyer's patches, and lymphoid aggregates of the colon. The hemorrhage was transient and occurred in a dose-dependent fashion. It was maximal 5 min after injection and resolved completely by 3 days. A unique feature of this altered vascular permeability was the absence of polymorphonuclear leukocytic infiltration, edema, vasculitis, and tissue necrosis

    Mast cell activation by group A streptococcal polysaccharide in the rat and its role in experimental arthritis.

    Get PDF
    Acute edematous responses were induced in Sprague-Dawley rats by the intravenous injection of group-specific polysaccharide (PS) isolated from group A streptococci. Thirty minutes after the intravenous injection of PS there was marked degranulation of subcutaneous and periarticular mast cells in all 4 feet, carbon particle labeling of adjacent venules, and an 8-fold increase in Evans blue dye content of the extremities. This acute reaction to PS was completely blocked by pretreatment with compound 48/80, but the polyarticular relapsing arthritis following the systemic injection of an arthropathic dose of streptococcal cell wall fragments containing large, covalently bound peptidoglycan-polysaccharide (PG-PS) was not blocked

    Genetic mapping of APP and amyloid-β biology modulation by trisomy 21

    Get PDF
    Individuals who have Down syndrome (DS) frequently develop early onset Alzheimer's disease (AD), a neurodegenerative condition caused by the build-up of aggregated amyloid-β and tau proteins in the brain. Amyloid-β is produced by amyloid precursor protein (APP), a gene located on chromosome 21. People who have Down syndrome have three copies of chromosome 21 and thus also an additional copy of APP; this genetic change drives the early development of Alzheimer's disease in these individuals. Here we use a combination of next-generation mouse models of Down syndrome (Tc1, Dp3Tyb, Dp(10)2Yey and Dp(17)3Yey) and a knockin mouse model of amyloid-β accumulation (AppNL-F ) to determine how chromosome 21 genes, other than APP, modulate APP/amyloid-β in the brain when in three copies. Using both male and female mice, we demonstrate that three copies of other chromosome 21 genes are sufficient to partially ameliorate amyloid-β accumulation in the brain. We go on to identify a subregion of chromosome 21 that contains the gene/genes causing this decrease in amyloid-β accumulation and investigate the role of two lead candidate genes Dyrk1a and Bace2 Thus an additional copy of chromosome 21 genes, other than APP, can modulate APP/amyloid-β in the brain under physiological conditions. This work provides critical mechanistic insight into the development of disease and an explanation for the typically later age of onset of dementia in people who have AD-DS, compared to those who have familial AD caused by triplication of APP Significance Statement:Trisomy of chromosome 21 is a commonly occurring genetic risk factor for early-onset Alzheimer's disease, which has been previously attributed to people with Down syndrome having three copies of the APP gene, which is encoded on chromosome 21. However, we have shown that an extra copy of other chromosome 21 genes modifies AD-like phenotypes independently of APP copy number (Wiseman et al. 2018, Brain; Tosh et al. 2021 Scientific Reports). Here, we use a mapping approach to narrow-down the genetic cause of the modulation of pathology; demonstrating that gene(s) on chromosome 21 decrease amyloid-β accumulation in the brain, independently of alterations to full-length APP or C-terminal fragment abundance and that just 38 genes are sufficient to cause this

    Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA.

    Get PDF
    Restoration of the impaired balance between pro- and antiinflammatory cytokines should provide effective treatment of rheumatoid arthritis. Gene therapy has been proposed as an approach for delivery of therapeutic proteins to arthritic joints. Here, we examined the efficacy of antiinflammatory gene therapy in bacterial cell wall-induced arthritis in rats. Human secreted interleukin 1 receptor antagonist (sIL-1ra) was expressed in joints of rats with recurrent bacterial cell wall-induced arthritis by using ex vivo gene transfer. To achieve this, primary synoviocytes were transduced in culture with a retroviral vector carrying the sIL-1ra cDNA. Transduced cells were engrafted in ankle joints of animals prior to reactivation of arthritis. Animals in control groups were engrafted with synoviocytes transduced with lacZ and neo marker genes. Cells continued to express transferred genes for at least 9 days after engraftment. We found that gene transfer of sIL-1ra significantly suppressed the severity of recurrence of arthritis, as assessed by measuring joint swelling and by the gross-observation score, and attenuated but did not abolish erosion of cartilage and bone. The effect of intraarticularly expressed sIL-1ra was essentially local, as there was no significant difference in severity of recurrence between unengrafted contralateral joints in control and experimental groups. We estimate that locally expressed sIL-1ra was about four orders of magnitude more therapeutically efficient than systemically administered recombinant sIL-1ra protein. These findings provide experimental evidence for the feasibility of antiinflammatory gene therapy for arthritis

    State-of-the art data normalization methods improve NMR-based metabolomic analysis

    Get PDF
    Extracting biomedical information from large metabolomic datasets by multivariate data analysis is of considerable complexity. Common challenges include among others screening for differentially produced metabolites, estimation of fold changes, and sample classification. Prior to these analysis steps, it is important to minimize contributions from unwanted biases and experimental variance. This is the goal of data preprocessing. In this work, different data normalization methods were compared systematically employing two different datasets generated by means of nuclear magnetic resonance (NMR) spectroscopy. To this end, two different types of normalization methods were used, one aiming to remove unwanted sample-to-sample variation while the other adjusts the variance of the different metabolites by variable scaling and variance stabilization methods. The impact of all methods tested on sample classification was evaluated on urinary NMR fingerprints obtained from healthy volunteers and patients suffering from autosomal polycystic kidney disease (ADPKD). Performance in terms of screening for differentially produced metabolites was investigated on a dataset following a Latin-square design, where varied amounts of 8 different metabolites were spiked into a human urine matrix while keeping the total spike-in amount constant. In addition, specific tests were conducted to systematically investigate the influence of the different preprocessing methods on the structure of the analyzed data. In conclusion, preprocessing methods originally developed for DNA microarray analysis, in particular, Quantile and Cubic-Spline Normalization, performed best in reducing bias, accurately detecting fold changes, and classifying samples
    corecore