9 research outputs found

    Strukturelle und funktionelle Untersuchungen am Cytochrom-bc1-Komplex aus Paracoccus denitrificans

    Get PDF
    Cytochrom bc-Komplexe sind zentrale Enzyme energietransduzierender Elektronen-transportketten. Anerkanntes Funktionsprinzip ist der Q-Zyklus; mechanistische Details insbesondere der Chinoloxidation am Qo-Zentrum sind noch unklar. Ein VerstĂ€ndnis des Qo-Zentrums ist auch von Interesse, da hier Inhibitoren in Form von Fungiziden und Malariatherapeutika wichtige Anwendung finden. In den vergangenen Jahren wurde eine Reihe mitochondrialer Komplexe kristallographisch charakterisiert, die Struktur eines bakteriellen Enzyms steht jedoch aus. Hauptziel dieser Arbeit war es, AnsĂ€tze zur StrukturaufklĂ€rung des bc1-Komplexes aus Paracoccus denitrificans (P.d.) zu finden, der als homologes Enzym mitochondrialer Komplexe bei einfacher genetischer ZugĂ€nglichkeit ein wichtiges Modellsystem darstellt. In der vorliegenden Arbeit wurde auf die Kristallisation des bc1-Komplexes aus S. cerevisiae aufgebaut, die mit Hilfe monoklonaler Antikörperfragmente (Fv) gegen die Rieske-Untereinheit (ISP) erreicht wurde; die Fv-Fragmente erleichtern die Ausbildung von Kristallkontakten. Die Epitopregion des Hefeenzyms wurde genetisch auf den bakteriellen Komplex ĂŒbertragen, um dessen Ko-Kristallisation mit dem bereits verfĂŒgbaren Fv zu ermöglichen. Punktuelle Anpassungen fĂŒhrten zu keiner signifikanten Bindung, ein weitergehender Austausch des entsprechenden ISP-Bereichs verbesserte die Bindung hingegen deutlich. Die besten Ergebnisse konnten mit chimĂ€ren Enzymen erzielt werden, bei denen die gesamte ISP-EktodomĂ€ne durch das Hefe-Homologe ersetzt wurde. Aufbauend auf dieser Arbeit scheint die Fv-vermittelte Kristallisation des Enzyms ein greifbares Ziel. Eine komplementĂ€re Strategie zielte auf die strukturelle Charakterisierung der Rieske-EktodomĂ€ne (ISF). Das klonierte ISF wurde in E. coli ĂŒberexprimiert, lag jedoch fast vollstĂ€ndig in inclusion bodies vor. Das ISF konnte in eine lösliche Form rĂŒckgefaltet werden, die anschließende chemische Rekonstitution zum Holo-Protein gelang jedoch nur mit einer Ausbeute von ~ 1 %. Die geringe Menge an löslichem ISF, die sich nach Expression in E. coli isolieren lĂ€sst, trĂ€gt kein [2Fe-2S]-Zentrum. Durch Koexpression der fĂŒr die Biogenese von Eisen-Schwefel-Zentren relevanten Gencluster konnte die lösliche ISF-Fraktion in vivo in die Holo-Form konvertiert werden. Auch hier war aber die Gesamtausbeute fĂŒr strukturelle Untersuchungen zu gering. Eine homologe Expression in P.d. war nur fĂŒr das komplette ISP nachweisbar, nicht fĂŒr das verkĂŒrzte ISF. Durch gerichtete Mutagenese konnte hier erstmals gezeigt werden, dass das bakterielle Rieske-Protein ĂŒber den Tat-Translokationsweg in die Membran inseriert. Die Kristallstrukturen mitochondrialer bc1-Komplexe zeigen ein dimeres Enzym. Die Assoziation des bakteriellen Komplexes wurde in dieser Arbeit mit der analytischen Ultrazentrifugation untersucht, und auch hier wurde eindeutig ein Dimer nachgewiesen. Dynamische Messverfahren deuteten jedoch auf einen höheren Assoziationszustand hin. Es bleibt unklar, ob diese Diskrepanz durch Formparameter oder die Detergenzbindung begrĂŒndet ist oder ob unter bestimmten Versuchsbedingungen möglicherweise Tetramere vorliegen. In situ ist der bc1-Komplex strukturell mit den Komplexen I und IV sowie dem ElektronenĂŒbertrĂ€ger Cyt c552 assoziiert. Die Analyse verschiedener DeletionsstĂ€mme zeigte, dass Komplex I der Atmungskette durch diesen Superkomplex stabilisiert wird. Dieser Befund konnte kĂŒrzlich in anderen Arbeiten auch an menschlichen Mitochondrien bestĂ€tigt werden. Neben strukturellen Aspekten wurden am bc1-Komplex auch die H+-Translokation und die Chinonbindung untersucht. Da chemische Modifikationsexperimente zeigen, dass ein saurer Rest im ISP eine kritische Rolle fĂŒr die Kopplung von H+-Translokation und Elektronentransport spielt, wurden durch gerichtete Mutagenese kombinatorisch saure Reste gegen entsprechende SĂ€ureamide ersetzt. Die biochemische Charakterisierung wurde nur fĂŒr eine FĂŒnffach-Mutante durchgefĂŒhrt; diese erwies sich jedoch als zu instabil, um verlĂ€ssliche Daten aus H+-Pumpexperimenten zu gewinnen. Die Charakterisierung der ĂŒbrigen Mutanten scheint lohnenswert, da der relevante AminosĂ€urerest auch in anderen Arbeiten noch nicht identifiziert werden konnte. Der Gehalt des aufgereinigten Enzyms an spezifisch gebundenem Chinon wurde FTIR-spektroskopisch quantifiziert. Eine Stöchiometrie von ~ 3 ChinonmolekĂŒlen/Monomer stĂŒtzt das double occupancy-Modell, demzufolge zwei SubstratmolekĂŒle am Qo-Zentrum binden; das dritte Chinon bindet am Qi-Zentrum. Partielle Extraktion des Chinons und Messungen bei verschiedenen pH-Werten zeigten, dass die Substratbindung mit Protonierung eines sauren Rests einhergeht. Möglicherweise handelt es sich dabei um Glu295 des Cytochrom b, das auf Basis der Kristallstrukturen als primĂ€rer H+-Akzeptor am Qo-Zentrum diskutiert wird. Aufbauend auf dieser Arbeit können die an der Chinonbindung beteiligten Reste durch Mutagenese identifiziert werden

    Surf1, associated with Leigh syndrome in humans, is a heme-binding protein in bacterial oxidase biogenesis

    No full text
    Biogenesis of mitochondrial cytochrome c oxidase (COX) relies on a large number of assembly factors, among them the transmembrane protein Surf1. The loss of human Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder caused by severe COX deficiency. In the bacterium Paracoccus denitrificans, two homologous proteins, Surf1c and Surf1q, were identified, which we characterize in the present study. When coexpressed in Escherichia coli together with enzymes for heme a synthesis, the bacterial Surf1 proteins bind heme a in vivo. Using redox difference spectroscopy and isothermal titration calorimetry, the binding of the heme cofactor to purified apo-Surf1c and apo-Surf1q is quantified: Each of the Paracoccus proteins binds heme a in a 1:1 stoichiometry and with Kd values in the submicromolar range. In addition, we identify a conserved histidine as a residue crucial for heme binding. Contrary to most earlier concepts, these data support a direct role of Surf1 in heme a cofactor insertion into COX subunit I by providing a protein-bound heme a pool

    Biophysical characterization of the interaction between hepatic glucokinase and its regulatory protein: impact of physiological and pharmacological effectors

    No full text
    Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic beta-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, DeltaH = 15.6 kcal/mol, TDeltaS = 25.7 kcal/mol, DeltaCp = -354 cal mol(-1) K(-1)). With k(off) = 1.3 x 10(-2) s(-1), the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs

    Best practices on critical reagent characterization, qualification, and life cycle management for HCP immunoassays

    No full text
    The performance of immunoassays for the detection and quantification of host cell proteins (HCPs) in biopharmaceuticals depends on the quality of the critical assay reagents. Not only their preparation, but also a stringent life-cycle management, including reagent qualification, requalification and replacement, plays a crucial role in ensuring consistent and reliable results. To provide a cross-industry perspective on HCP reagent management, we conducted a survey on common practices among several pharmaceutical and biotech companies. Based on its outcome, as well as informed by a corresponding roundtable session (“Managing critical reagents over time”) at the BioPharmaceutical Emerging Best Practices Association (BEBPA) HCP conference in 2019, this work presents specific recommendations and proven concepts to support immunoassay reagent management for monitoring HCPs

    Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc1 complex: enzyme with one inactive monomer is fully active but unable to activate the second ubiquinol oxidation site in response to ligand binding at the ubiquinone reduction site

    No full text
    We previously proposed that the dimeric cytochrome bc(1) complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc(1) monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289-22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc(1) complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10-16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c(1) by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site

    Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans

    No full text
    Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete “respirasome.” Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes

    Using enhanced development tools offered by analytical Quality by Design to support switching of an analytical quality control method

    No full text
    Quality by Design (QbD) principles play an increasingly important role in pharmaceutical industry. Here, we used an analytical QbD (AQbD) approach to develop a capillary electrophoresis method under reducing conditions (rCE-SDS), with the aim of replacing SDS-PAGE as release and stability test method for a commercialized monoclonal antibody product. Method development started with defining analytical method performance requirements as part of an analytical target profile (ATP), followed by a systematic risk assessment of method input parameters and their relation to defined method outputs. Based on this, design of experiments (DoE) studies were performed to identify a method operable design region (MODR). The MODR could be leveraged to improve method robustness. In a bridging study, it was demonstrated that the rCE-SDS method is more sensitive than the legacy SDS-PAGE method, and a correlation factor could be established to compensate for an off-set due to the higher sensitivity, without losing the correlation to the historical data acquired with the former method. Overall, systematic application of AQbD principles for designing and developing a new analytical method helped to elucidate the complex dependency of method outputs on its input parameters. The link of the method to critical quality attributes and the definition of method performance requirements were found to be most relevant for de-risking the analytical method switch, regarding impact on the control strategy

    Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine

    No full text
    Clinically relevant subtypes exist for pancreatic ductal adenocarcinoma (PDAC), but molecular characterization is not yet standard in clinical care. We implemented a biopsy protocol to perform time-sensitive whole exome sequencing and RNA-sequencing for patients with advanced PDAC. Therapeutically relevant genomic alterations were identified in 48% (34/71) and pathogenic/likely pathogenic germline alterations in 18% (13/71) of patients. Overall, 30% (21/71) of enrolled patients experienced a change in clinical management as a result of genomic data. Twenty-six patients had germline and/or somatic alterations in DNA-damage repair genes, and 5 additional patients had mutational signatures of homologous recombination deficiency but no identified causal genomic alteration. Two patients had oncogenic in-frame BRAF deletions, and we report the first clinical evidence that this alteration confers sensitivity to MAP-kinase pathway inhibition. Moreover, we identified tumor/stroma gene expression signatures with clinical relevance. Collectively, these data demonstrate the feasibility and value of real-time genomic characterization of advanced PDAC
    corecore