4 research outputs found
RIT2 Polymorphisms: Is There a Differential Association?
Neurological disorders include a wide variety of mostly multifactorial diseases related to the development, survival, and function of the neuron cells. Single-nucleotide polymorphisms (SNPs) have been extensively studied in neurological disorders, and in a number of instances have been reproducibly linked to disease as risk factors. The RIT2 gene has been recently shown to be associated with a number of neurological disorders, such as Parkinson’s disease (PD) and autism. In the study reported here, we investigated the association of the rs12456492 and rs16976358 SNPs of the RIT2 gene with PD, essential tremor (ET), autism, schizophrenia (SCZ), and bipolar disorder (BPD; total of 2290 patients), and 1000 controls, by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Significant association was observed between rs12456492 and two disorders, PD and ET, whereas rs16976358 was found to be associated with autism, SCZ, and BPD. Our findings are indicative of differential association between the RIT2 SNPs and different neurological disorders. © 2016, Springer Science+Business Media New York
A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations
In this study, the role of known Parkinson�s disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families. © 2017, Springer Science+Business Media New York
A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations
In this study, the role of known Parkinson�s disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families. © 2017, Springer Science+Business Media New York