22 research outputs found

    フィリピン、イサベラオフィオライトの超苦鉄質岩および苦鉄質岩の地質学・岩石学・地球化学的研究

    Get PDF
    取得学位:博士(学術),学位授与番号:博甲第771号,学位授与年月日:平成17年9月30日,学位授与年:200

    Podiform chromitites in the lherzolite-dominant mantle section of the Isabela ophiolite, the Philippines

    Get PDF
    金沢大学理工研究域自然システム学系The Isabela ophiolite, the Philippines, is characterized by a lherzolite-dominant mantle section, which was probably formed beneath a slow-spreading mid-ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive-type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high-Cr# (Cr/(Cr + Al) atomic ratio = ∼0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low-Cr# chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open-system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex-shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt-rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone-refining effect. The Cr# of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc-related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow-spreading mid-ocean ridge, later introduced by arc-related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin. © 2006 The Authors; Journal compilation © 2006 Blackwell Publishing Asia Pty Ltd

    Complete mantle section of a slow-spreading ridge-derived ophiolite: An example from the Isabela ophiolite in the Philippines

    Get PDF
    金沢大学理工研究域自然システム学系The Isabela ophiolite shows a complete ophiolite sequence exposed along the eastern coast of northern Luzon, the Philippines. It forms the Cretaceous basement complex for the northeastern Luzon block. This ophiolite is located at the northern end of a trail of ophiolites and ophiolitic bodies along the eastern margin of the Philippine Mobile Belt. This paper presents new findings regarding the nature and characteristics of the Isabela ophiolite. Peridotites from the Isabela ophiolite are relatively fresh and are composed of spinel lherzolites, clinopyroxene-rich harzburgites, depleted harzburgites and dunites. The modal composition, especially the pyroxene content, defines a northward depletion trend from fertile lherzolite to clinopyroxene-rich harzburgites and more refractory harzburgites. Variation in modal composition is accompanied by petrographic textural variations. The chromium number of spinel, an indicator of the degree of partial melting, concurs with petrographic observations. Furthermore, the Isabela ophiolite peridotites are similar in spinel and olivine major-element geochemistry and clinopyroxene rare earth-element composition to abyssal peridotites from modern mid-oceanic ridges. Petrological and mineral compositions suggest that the Isabela ophiolite is a transitional ophiolite subtype, with the fertile lherzolites representing lower sections of the mantle column that are usually absent in most ophiolitic massifs. The occurrence of the fertile peridotite presents a rare opportunity to document the lower sections of the ophiolitic mantle. The variability in composition of the peridotites in one continuous mantle section may also represent a good analogy of the melting column in the present-day mid-oceanic ridges. © 2005 Blackwell Publishing Asia Pty Ltd

    Epithermal Mineralization of the Bonanza-Sandy Vein System, Masara Gold District, Mindanao, Philippines

    Get PDF
    The Masara Gold District in southeastern Mindanao island is an area of prolific hydrothermal copper and gold mineralization. This study documents the mineralization characteristics of the NW-trending Bonanza-Sandy epithermal veins to constrain possible hydrothermal fluid sources and ore-forming mechanisms. Epithermal mineralization in the NW veins is divided into three main stages: Stage 1 - massive quartz-sulfide; Stage 2 - massive to amorphous quartz-carbonate (calcite); and Stage 3 - colloform-cockade quartz-carbonate (bladed rhodochrosite). Stage 1 is the main gold mineralization phase, with chalcopyrite, pyrite, sphalerite and galena occurring with native gold and tellurides. Stages 2 and 3 contain invisible gold in the sphalerite, galena, pyrite and chalcopyrite. The deposit exhibits mineralization characteristics typical of intermediate sulfidation epithermal deposits based on the dominant chalcopyrite-pyrite mineral assemblage; illite-muscovite-chlorite alteration mineralogy that point to neutral pH conditions; and sphalerite composition of 2.26 to 8.72 mol% FeS in Stage 1 and 0.55 to 1.13 mol% FeS in Stage 2. The K-Ar age date of illite separates from highly altered diorite porphyry of the Lamingag Intrusive Complex yielded an Early Pliocene age (5.12 ± 0.16 Ma). Hydrothermal fluid exsolved from the magma that formed the Lamingag Intrusive Complex probably formed the ore-forming Stage 1 veins. Stages 2 and 3 involved the deposition of quartz and carbonate veins possibly by boiling hydrothermal fluids. Precious and base metal deposition was controlled by the Masara Fault Zone. Exploration markers for gold mineralization in the Masara Gold District and vicinity include the presence of Lamingag Intrusive Complex and massive sulfide veins

    Magmatic Products by Ocean Floor Spreading in MAR : Preliminary Analyses of Peridotites from IODP Exp.304/305 at Atlantis Massif, MAR 30°N

    Get PDF
    金沢大学大学院自然科学研究科4the International Symposium of the Kanazawa University 21st-Century COE Program, Promotion Envirnmental Research in Pan-Japan Sea Area -Young Researchers\u27 Network- , DATE:March 8-10,2006, PLACE: Kanazawa Excel Hotel Tokyu, Japan, Sponsors: Japan Sea Research Institute / UNU-IAS(United Nation University Institute of Advanced Studies), Ishikawa Prefectural Government, City of Kanazaw

    Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B07103, doi:10.1029/2010JB007931.Expeditions 304 and 305 of the Integrated Ocean Drilling Program cored and logged a 1.4 km section of the domal core of Atlantis Massif. Postdrilling research results summarized here constrain the structure and lithology of the Central Dome of this oceanic core complex. The dominantly gabbroic sequence recovered contrasts with predrilling predictions; application of the ground truth in subsequent geophysical processing has produced self-consistent models for the Central Dome. The presence of many thin interfingered petrologic units indicates that the intrusions forming the domal core were emplaced over a minimum of 100–220 kyr, and not as a single magma pulse. Isotopic and mineralogical alteration is intense in the upper 100 m but decreases in intensity with depth. Below 800 m, alteration is restricted to narrow zones surrounding faults, veins, igneous contacts, and to an interval of locally intense serpentinization in olivine-rich troctolite. Hydration of the lithosphere occurred over the complete range of temperature conditions from granulite to zeolite facies, but was predominantly in the amphibolite and greenschist range. Deformation of the sequence was remarkably localized, despite paleomagnetic indications that the dome has undergone at least 45° rotation, presumably during unroofing via detachment faulting. Both the deformation pattern and the lithology contrast with what is known from seafloor studies on the adjacent Southern Ridge of the massif. There, the detachment capping the domal core deformed a 100 m thick zone and serpentinized peridotite comprises ∼70% of recovered samples. We develop a working model of the evolution of Atlantis Massif over the past 2 Myr, outlining several stages that could explain the observed similarities and differences between the Central Dome and the Southern Ridge
    corecore