5 research outputs found

    Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario

    Get PDF
    A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate to ecosystems, where exposures will likely be at low-concentrations and which are inhabited by a diversity of organisms. Here we show adverse responses of plants and microorganisms in a replicated long-term terrestrial mesocosm field experiment following a single low dose of silver nanoparticles (0.14 mg Ag kg−1 soil) applied via a likely route of exposure, sewage biosolid application. While total aboveground plant biomass did not differ between treatments receiving biosolids, one plant species, Microstegium vimeneum, had 32 % less biomass in the Slurry+AgNP treatment relative to the Slurry only treatment. Microorganisms were also affected by AgNP treatment, which gave a significantly different community composition of bacteria in the Slurry+AgNPs as opposed to the Slurry treatment one day after addition as analyzed by T-RFLP analysis of 16S-rRNA genes. After eight days, N2O flux was 4.5 fold higher in the Slurry+AgNPs treatment than the Slurry treatment. After fifty days, community composition and N2O flux of the Slurry+AgNPs treatment converged with the Slurry. However, the soil microbial extracellular enzymes leucine amino peptidase and phosphatase had 52 and 27% lower activities, respectively, while microbial biomass was 35% lower than the Slurry. We also show that the magnitude of these responses was in all cases as large as or larger than the positive control, AgNO3, added at 4-fold the Ag concentration of the silver nanoparticles

    Microbial abundance, activity, and composition affected by Ag.

    No full text
    <p><b>A</b> Microbial biomass in 0–1 cm soils on Day 50 of the experiment; <b>B</b> N<sub>2</sub>O flux from soil on day 8; <b>C</b> activity of the proteolytic extracellular enzyme leucine aminopeptidase (LAP), on day 50; <b>D</b> activity of the organophosphorous degrading enzyme phosphatase on day 50; <b>E</b> NMS ordination of bacterial community composition with day of experiment designated by shapes: Day 0 (triangles), Day 1 (squares), and 50 (circles); and treatment designated by colors: Control (white), Slurry (black), Slurry+AgNPs (gray), and Slurry+AgNO<sub>3</sub> (red). All error bars are standard error of the mean, and shared letters denote no significant difference at p<0.05 between treatments in panels A–D (n = 6)</p
    corecore