6 research outputs found

    A survey on Malware, Botnets and their detection

    Full text link
    The use of Internet and its related services is increasing day by day. Many million people everyday surf net and use it for various reasons. With so much use of internet, the threats related to security are the major concern of today. There are many security concerns or threats faced by the net surfers and that is because of malwares which have many forms such as viruses, worms, trojans horses, rootkits, botnets and various other forms of data attacks. Among all the threats mentioned above, botnet seems to be quite prevalent now days. It has already spread its roots in Wide Area Network (WAN) such as Internet and continuously spreading at very high pace. Botnet is a network of computers where the computers are infected by installing in them a harmful program. Each computer as a part of Botnet is called a bot or zombie. A Botnet is remotely controlled by a person who commands and controls the bots through a server called command and control sever(C). Such person who commands the bots is called a botmaster or bot herder. This paper is written to serve the objective to perform an extensive study of core problem that is the study and detection of Botnets.This paper focuses on the study of malwares where special emphasis is put on botnets and their detection

    Botnet Forensic Analysis Using Machine Learning

    No full text
    Botnet forensic analysis helps in understanding the nature of attacks and the modus operandi used by the attackers. Botnet attacks are difficult to trace because of their rapid pace, epidemic nature, and smaller size. Machine learning works as a panacea for botnet attack related issues. It not only facilitates detection but also helps in prevention from bot attack. The proposed inquisition model endeavors improved quality of results by comprehensive botnet detection and forensic analysis. This scenario has been applied in eight different combinations of ensemble classifier technique to detect botnet evidence. The study is also compared to the ensemble-based classifiers with the single classifier using different parameters. The results exhibit that the proposed model can improve accuracy over a single classifier

    Botnet analysis using ensemble classifier

    No full text
    This paper analyses the botnet traffic using Ensemble of classifier algorithm to find out bot evidence. We used ISCX dataset for training and testing purpose. We extracted the features of both training and testing datasets. After extracting the features of this dataset, we bifurcated these features into two classes, normal traffic and botnet traffic and provide labelling. Thereafter using modern data mining tool, we have applied ensemble of classifier algorithm. Our experimental results show that the performance for finding bot evidence using ensemble of classifiers is better than single classifier. Ensemble based classifiers perform better than single classifier by either combining powers of multiple algorithms or introducing diversification to the same classifier by varying input in bot analysis. Our results are showing that by using voting method of ensemble based classifier accuracy is increased up to 96.41% from 93.37%

    A methodical exploration of imaging modalities from dataset to detection through machine learning paradigms in prominent lung disease diagnosis: a review

    No full text
    Abstract Background Lung diseases, both infectious and non-infectious, are the most prevalent cause of mortality overall in the world. Medical research has identified pneumonia, lung cancer, and Corona Virus Disease 2019 (COVID-19) as prominent lung diseases prioritized over others. Imaging modalities, including X-rays, computer tomography (CT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans, and others, are primarily employed in medical assessments because they provide computed data that can be utilized as input datasets for computer-assisted diagnostic systems. Imaging datasets are used to develop and evaluate machine learning (ML) methods to analyze and predict prominent lung diseases. Objective This review analyzes ML paradigms, imaging modalities' utilization, and recent developments for prominent lung diseases. Furthermore, the research also explores various datasets available publically that are being used for prominent lung diseases. Methods The well-known databases of academic studies that have been subjected to peer review, namely ScienceDirect, arXiv, IEEE Xplore, MDPI, and many more, were used for the search of relevant articles. Applied keywords and combinations used to search procedures with primary considerations for review, such as pneumonia, lung cancer, COVID-19, various imaging modalities, ML, convolutional neural networks (CNNs), transfer learning, and ensemble learning. Results This research finding indicates that X-ray datasets are preferred for detecting pneumonia, while CT scan datasets are predominantly favored for detecting lung cancer. Furthermore, in COVID-19 detection, X-ray datasets are prioritized over CT scan datasets. The analysis reveals that X-rays and CT scans have surpassed all other imaging techniques. It has been observed that using CNNs yields a high degree of accuracy and practicability in identifying prominent lung diseases. Transfer learning and ensemble learning are complementary techniques to CNNs to facilitate analysis. Furthermore, accuracy is the most favored metric for assessment

    A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization

    No full text
    Abstract Skin cancer is a frequently occurring and possibly deadly disease that necessitates prompt and precise diagnosis in order to ensure efficacious treatment. This paper introduces an innovative approach for accurately identifying skin cancer by utilizing Convolution Neural Network architecture and optimizing hyperparameters. The proposed approach aims to increase the precision and efficacy of skin cancer recognition and consequently enhance patients' experiences. This investigation aims to tackle various significant challenges in skin cancer recognition, encompassing feature extraction, model architecture design, and optimizing hyperparameters. The proposed model utilizes advanced deep-learning methodologies to extract complex features and patterns from skin cancer images. We enhance the learning procedure of deep learning by integrating Standard U-Net and Improved MobileNet-V3 with optimization techniques, allowing the model to differentiate malignant and benign skin cancers. Also substituted the crossed-entropy loss function of the Mobilenet-v3 mathematical framework with a bias loss function to enhance the accuracy. The model's squeeze and excitation component was replaced with the practical channel attention component to achieve parameter reduction. Integrating cross-layer connections among Mobile modules has been proposed to leverage synthetic features effectively. The dilated convolutions were incorporated into the model to enhance the receptive field. The optimization of hyperparameters is of utmost importance in improving the efficiency of deep learning models. To fine-tune the model's hyperparameter, we employ sophisticated optimization methods such as the Bayesian optimization method using pre-trained CNN architecture MobileNet-V3. The proposed model is compared with existing models, i.e., MobileNet, VGG-16, MobileNet-V2, Resnet-152v2 and VGG-19 on the “HAM-10000 Melanoma Skin Cancer dataset". The empirical findings illustrate that the proposed optimized hybrid MobileNet-V3 model outperforms existing skin cancer detection and segmentation techniques based on high precision of 97.84%, sensitivity of 96.35%, accuracy of 98.86% and specificity of 97.32%. The enhanced performance of this research resulted in timelier and more precise diagnoses, potentially contributing to life-saving outcomes and mitigating healthcare expenditures
    corecore