18 research outputs found

    Evaluation of the structural-phase characteristics of a supersaturated ultrafine-grained Au-Co solid solution by diffractometry in hard synchrotron radiation

    Full text link
    A synchrotron radiation study of immiscible Au-Co alloys obtained by consolidating a heterogeneous mixture of components and subsequent severe plastic deformation was performed. Namely, the estimates of the crystal lattice parameter, the average size of the coherent scattering regions and lattice strains in mechanically alloyed supersaturated solid solutions were made using obtained diffraction patterns and diffraction spectra. The effect of the temperature regime of deformation processing on the listed characteristics is shown, when the transition from cold deformation to cryogenic is carried out. © 2020 American Institute of Physics Inc. All rights reserved.The work was done at the shared research center SSTRC on the basis of the VEPP-4 - VEPP-2000 complex at BINP SB RAS, using equipment supported by project RFMEFI62119X0022. The SR XRD performed at the station "Diffractometry in the "hard" X-ray range" of the 4th synchrotron radiation channel of the VEPP-3 accelerator of the Siberian Center of Synchrotron and Terahertz Radiation of the Budker Institute of Nuclear Physics by Alexey I. Ancharov. Obtaining and deformation processing of the investigated materials were carried out on the basis of M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Рressure” No. АААА-А18-118020190104-3), supported in part by RFBR (project No. 19-32-60039)

    The white SR spectrum experimental station

    No full text
    A new experimental station for working with white synchrotron radiation is described. Radiation from the bending magnet of the VEPP-4 storage ring is used. The station is destined for study of structures at high pressure by energy-dispersive and Laue diffraction methods
    corecore