6 research outputs found

    Lipase applications in food industry

    No full text
    141-158Lipases are the most pliable biocatalyst and bring about a wide range of bioconversion reactions, such as hydrolysis, interesterification, esterification, alcoholysis, acidolysis and aminolysis. Lipases can act on a variety of substrates including natural oils, synthetic triglycerides and esters of fatty acids. They are resistant to solvents and are exploited in a broad spectrum of biotechnological applications. Lipase catalyzed transesterification, hydrolysis and esterification are the important class of reactions for food technology applications in fats and oil industry, dairy industry, pharmaceuticals and bakery industry. Lipases are very peculiar as they hydrolyse fats into fatty acids and glycerol at the water-lipid interface and can reverse the reaction in non-aqueous media. Novel biotechnological applications, like biopolymer synthesis, biodiesel production, treatment of fat-containing waste effluents, enantiopure synthesis of pharmaceuticals and nutraceutical agents, have been established successfully. The present article extends the frontier of lipase technology towards food processing applications and discusses the important characteristics of lipases and its sources. Various methods of lipase immobilization for food technology applications, various assay methods for lipase, production of lipase by submerged and solid state fermentation strategies, and various purification methods available have been discussed in detail

    Mathematical modeling of fission yeast Schizosaccharomyces pombe cell cycle: exploring the role of multiple phosphatases

    No full text
    Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1→S→G<sub>2</sub>→M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations

    Abstracts of National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology

    No full text
    This book contains the abstracts of the papers presented at the National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental Biotechnology (NCB4EBT-2021) Organized by the Department of Biotechnology, National Institute of Technology Warangal, India held on 29–30 January 2021. This conference is the first of its kind organized by NIT-W which covered an array of interesting topics in biotechnology. This makes it a bit special as it brings together researchers from different disciplines of biotechnology, which in turn will also open new research and cooperation fields for them. Conference Title: National Conference on Biological, Biochemical, Biomedical, Bioenergy, and Environmental BiotechnologyConference Acronym: NCB4EBT-2021Conference Date: 29–30 January 2021Conference Location: Online (Virtual Mode)Conference Organizer: Department of Biotechnology, National Institute of Technology Warangal, Indi
    corecore