5 research outputs found

    Mathematical modeling of thermal processes during "cassette" crystallization of chalcogenides

    No full text
    A new, relatively simple and highly efficient modification of the directional melt crystallization method in the form of a multi-cassette process has been considered. This study is based on Russian Patents and technological studies conducted at National Research and Technological University MISiS. As a result, mathematical models of a multi-cassette method have been developed for 3D radiation and conduction analysis of thermal processes in the entire volume of the heating unit and 2D analysis of convection and conduction heat exchange in a separate cassette. Parameters have been calculated on the basis of these mathematical models for clarifying the effect of heating unit component arrangement and dimensions on the formation of thermal fields in cassette units, the effect of vertical homogeneity of heat supply to the cassette unit and heating power reduction rate during crystallization on the shape of the crystallization front, as well as the effect of small asymmetry in cassette design and violation of cassette bottom cooling homogeneity on convection and asymmetrical heat transfer. Application of the conductive and radiative heat exchange model to the entire heating unit has allowed us to calculate process parameters on the basis of which we have analyzed the effect of heating unit components, their arrangement and temperature on the heat exchange conditions at the cassette unit boundaries. Application of the convective and conductive model to one growth cassette has shown that asymmetrical design and boundary thermal conditions as well as unstable vertical temperature gradient lead to the formation of convection vortices and substantial crystallization front deviation from planar shape. Calculations on the basis of the convective mass exchange model have shown that an increase in the crystallization rate by one order of magnitude greatly increases the tellurium flow into the crystal thus substantially altering the melt composition in the vicinity of the crystallization front and hence serving as a potential origin of dendrite growth. The authenticity of the calculation results has been verified in a number of tests aimed at analyzing the effect of heat and mass transport on crystallization front shape for cassette cooling rates that are typical of polycrystalline bismuth telluride growth processes

    Mathematical modeling of thermal processes during "cassette" crystallization of chalcogenides

    No full text
    A new, relatively simple and highly efficient modification of the directional melt crystallization method in the form of a multi-cassette process has been considered. This study is based on Russian Patents and technological studies conducted at National Research and Technological University MISiS. As a result, mathematical models of a multi-cassette method have been developed for 3D radiation and conduction analysis of thermal processes in the entire volume of the heating unit and 2D analysis of convection and conduction heat exchange in a separate cassette. Parameters have been calculated on the basis of these mathematical models for clarifying the effect of heating unit component arrangement and dimensions on the formation of thermal fields in cassette units, the effect of vertical homogeneity of heat supply to the cassette unit and heating power reduction rate during crystallization on the shape of the crystallization front, as well as the effect of small asymmetry in cassette design and violation of cassette bottom cooling homogeneity on convection and asymmetrical heat transfer. Application of the conductive and radiative heat exchange model to the entire heating unit has allowed us to calculate process parameters on the basis of which we have analyzed the effect of heating unit components, their arrangement and temperature on the heat exchange conditions at the cassette unit boundaries. Application of the convective and conductive model to one growth cassette has shown that asymmetrical design and boundary thermal conditions as well as unstable vertical temperature gradient lead to the formation of convection vortices and substantial crystallization front deviation from planar shape. Calculations on the basis of the convective mass exchange model have shown that an increase in the crystallization rate by one order of magnitude greatly increases the tellurium flow into the crystal thus substantially altering the melt composition in the vicinity of the crystallization front and hence serving as a potential origin of dendrite growth. The authenticity of the calculation results has been verified in a number of tests aimed at analyzing the effect of heat and mass transport on crystallization front shape for cassette cooling rates that are typical of polycrystalline bismuth telluride growth processes

    Hydrodynamics and Mass Transfer during the Solution Growth of the K2(Co,Ni)(SO4)2•6H2O Mixed Crystals in the Shapers

    No full text
    Mathematical models of the hydrodynamics and mass transfer processes during the mixed crystal growth from low-temperature aqueous solutions have been analyzed. The features of these processes are caused by complex design of the crystallizer with a shaper. Two models of the solution flowing into the shaper have been considered. In the first model, the solution is fed to the central part of the crystal. The second model presents a peripheral solution supply along the shaper perimeter, which allows us to create a swirling flow. The calculation models correspond to laminar and turbulent regimes of solution flow during the growth of K2(Co,Ni)(SO4)2•6H2O mixed crystal from an aqueous solution

    Influence of plastic formation parameters on structural characteristics of thermoelectric material during hot extrusion

    No full text
    We used mathematical modeling to compare the stress and deformation in a Bi0.4Sb1.6Te3 solid solution base thermoelectric material for extrusion through different diameter dies. The results show that extrusion through a 20 mm diameter die produces a more inhomogeneous deformation compared with extrusion through a 30 mm diameter die. Extrusion through a die of a larger diameter produces a structure that is coarser but has a more homogeneous grain size distribution. The degree of preferential grain orientation is higher for extrusion through a larger diameter die. We found a change in the lattice parameter of the solid solution along the extruded rod, correlating with detect formation during extrusion. The concentration of vacancies is higher for extrusion through a smaller diameter die. This difference between the structures results from a more intense dynamic recrystallization for a smaller diameter die. Increasing the die diameter and lowering the extrusion temperature allow retaining the thermoelectric properties of the material due to a better texture

    Regularities of Structure Formation in 30 mm Rods of Thermoelectric Material during Hot Extrusion

    No full text
    In this study, Ingots of (Bi, Sb)2Te3 thermoelectric material with p-type conductivity have been obtained by hot extrusion. The main regularities of hot extrusion of 30 mm rods have been analyzed with the aid of a mathematical simulation on the basis of the joint use of elastic-plastic body approximations. The phase composition, texture and microstructure of the (Bi, Sb)2Te3 solid solutions have been studied using X-ray diffraction and scanning electron microscopy. The thermoelectric properties have been studied using the Harman method. We show that extrusion through a 30 mm diameter die produces a homogeneous strain. The extruded specimens exhibit a fine-grained structure and a clear axial texture in which the cleavage planes are parallel to the extrusion axis. The quantity of defects in the grains of the (Bi, Sb)2Te3 thermoelectric material decreases with an increase in the extrusion rate. An increase in the extrusion temperature leads to a decrease in the Seebeck coefficient and an increase in the electrical conductivity. The specimens extruded at 450 °C and a 0.5 mm/min extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10−3 K−1)
    corecore