42 research outputs found

    On a Nonlocal Ostrovsky-Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    Get PDF
    Short-wave perturbations in a relaxing medium, governed by a special reduction of the Ostrovsky evolution equation, and later derived by Whitham, are studied using the gradient-holonomic integrability algorithm. The bi-Hamiltonicity and complete integrability of the corresponding dynamical system is stated and an infinite hierarchy of commuting to each other conservation laws of dispersive type are found. The well defined regularization of the model is constructed and its Lax type integrability is discussed. A generalized hydrodynamical Riemann type system is considered, infinite hierarchies of conservation laws, related compatible Poisson structures and a Lax type representation for the special case N=3 are constructed

    Some analytical properties of dissolving operators related with the Cauchy problem for a class of nonautonomous partial differential equations. Part 1

    Get PDF
    The analytical properties of dissolving operators related with the Cauchy problem for a class of nonautonomous partial differential equations in Hilbert spaces are studied using theory of bi-linear forms in respectively rigged Hilbert spaces triples. Theorems specifying the existence of a dissolving operator for a class of adiabatically perturbed nonautonomous partial differential equations are stated. Some applications of the results obtained are discussed

    A vertex operator representation of solutions to the Gurevich-Zybin hydrodynamical equation

    Get PDF
    An approach based on the spectral and Lie - algebraic techniques for constructing vertex operator representation for solutions to a Riemann type Gurevicz-Zybin hydrodynamical hierarchy is devised. A functional representation generating an infinite hirerachy of dispersive Lax type integrable flows is obtaned.Comment: 6 page
    corecore