8 research outputs found

    Heat-induced seizures, premature mortality, and hyperactivity in a novel Scn1a nonsense model for Dravet syndrome

    Get PDF
    Dravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy caused by de novo mutations in the SCN1A gene. Nonsense mutations are found in ∼20% of the patients, and the R613X mutation was identified in multiple patients. Here we characterized the epileptic and non-epileptic phenotypes of a novel preclinical Dravet mouse model harboring the R613X nonsense Scn1a mutation. Scn1aWT/R613X mice, on a mixed C57BL/6J:129S1/SvImJ background, exhibited spontaneous seizures, susceptibility to heat-induced seizures, and premature mortality, recapitulating the core epileptic phenotypes of Dravet. In addition, these mice, available as an open-access model, demonstrated increased locomotor activity in the open-field test, modeling some non-epileptic Dravet-associated phenotypes. Conversely, Scn1aWT/R613X mice, on the pure 129S1/SvImJ background, had a normal life span and were easy to breed. Homozygous Scn1aR613X/R613X mice (pure 129S1/SvImJ background) died before P16. Our molecular analyses of hippocampal and cortical expression demonstrated that the premature stop codon induced by the R613X mutation reduced Scn1a mRNA and NaV1.1 protein levels to ∼50% in heterozygous Scn1aWT/R613X mice (on either genetic background), with marginal expression in homozygous Scn1aR613X/R613X mice. Together, we introduce a novel Dravet model carrying the R613X Scn1a nonsense mutation that can be used to study the molecular and neuronal basis of Dravet, as well as the development of new therapies associated with SCN1A nonsense mutations in Dravet

    Functional Investigation of a Neuronal Microcircuit in the CA1 Area of the Hippocampus Reveals Synaptic Dysfunction in Dravet Syndrome Mice

    No full text
    Dravet syndrome is severe childhood-onset epilepsy, caused by loss of function mutations in the SCN1A gene, encoding for the voltage-gated sodium channel NaV1.1. The leading hypothesis is that Dravet is caused by selective reduction in the excitability of inhibitory neurons, due to hampered activity of NaV1.1 channels in these cells. However, these initial neuronal changes can lead to further network alterations. Here, focusing on the CA1 microcircuit in hippocampal brain slices of Dravet syndrome (DS, Scn1aA1783V/WT) and wild-type (WT) mice, we examined the functional response to the application of Hm1a, a specific NaV1.1 activator, in CA1 stratum-oriens (SO) interneurons and CA1 pyramidal excitatory neurons. DS SO interneurons demonstrated reduced firing and depolarized threshold for action potential (AP), indicating impaired activity. Nevertheless, Hm1a induced a similar AP threshold hyperpolarization in WT and DS interneurons. Conversely, a smaller effect of Hm1a was observed in CA1 pyramidal neurons of DS mice. In these excitatory cells, Hm1a application resulted in WT-specific AP threshold hyperpolarization and increased firing probability, with no effect on DS neurons. Additionally, when the firing of SO interneurons was triggered by CA3 stimulation and relayed via activation of CA1 excitatory neurons, the firing probability was similar in WT and DS interneurons, also featuring a comparable increase in the firing probability following Hm1a application. Interestingly, a similar functional response to Hm1a was observed in a second DS mouse model, harboring the nonsense Scn1aR613X mutation. Furthermore, we show homeostatic synaptic alterations in both CA1 pyramidal neurons and SO interneurons, consistent with reduced excitation and inhibition onto CA1 pyramidal neurons and increased release probability in the CA1-SO synapse. Together, these results suggest global neuronal alterations within the CA1 microcircuit extending beyond the direct impact of NaV1.1 dysfunction.</jats:p

    Data_Sheet_1_Functional Investigation of a Neuronal Microcircuit in the CA1 Area of the Hippocampus Reveals Synaptic Dysfunction in Dravet Syndrome Mice.PDF

    No full text
    Dravet syndrome is severe childhood-onset epilepsy, caused by loss of function mutations in the SCN1A gene, encoding for the voltage-gated sodium channel NaV1.1. The leading hypothesis is that Dravet is caused by selective reduction in the excitability of inhibitory neurons, due to hampered activity of NaV1.1 channels in these cells. However, these initial neuronal changes can lead to further network alterations. Here, focusing on the CA1 microcircuit in hippocampal brain slices of Dravet syndrome (DS, Scn1aA1783V/WT) and wild-type (WT) mice, we examined the functional response to the application of Hm1a, a specific NaV1.1 activator, in CA1 stratum-oriens (SO) interneurons and CA1 pyramidal excitatory neurons. DS SO interneurons demonstrated reduced firing and depolarized threshold for action potential (AP), indicating impaired activity. Nevertheless, Hm1a induced a similar AP threshold hyperpolarization in WT and DS interneurons. Conversely, a smaller effect of Hm1a was observed in CA1 pyramidal neurons of DS mice. In these excitatory cells, Hm1a application resulted in WT-specific AP threshold hyperpolarization and increased firing probability, with no effect on DS neurons. Additionally, when the firing of SO interneurons was triggered by CA3 stimulation and relayed via activation of CA1 excitatory neurons, the firing probability was similar in WT and DS interneurons, also featuring a comparable increase in the firing probability following Hm1a application. Interestingly, a similar functional response to Hm1a was observed in a second DS mouse model, harboring the nonsense Scn1aR613X mutation. Furthermore, we show homeostatic synaptic alterations in both CA1 pyramidal neurons and SO interneurons, consistent with reduced excitation and inhibition onto CA1 pyramidal neurons and increased release probability in the CA1-SO synapse. Together, these results suggest global neuronal alterations within the CA1 microcircuit extending beyond the direct impact of NaV1.1 dysfunction.</p

    Heat-induced seizures, premature mortality, and hyperactivity in a novel<i>Scn1a</i>nonsense model for Dravet syndrome

    Full text link
    AbstractDravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy caused byde novomutations in theSCN1Agene. Nonsense mutations are found in ~20% of the patients, and the R613X mutation was identified in multiple patients. Here we characterized the epileptic and non-epileptic comorbidities of a novel preclinical Dravet mouse model harboring this nonsenseScn1amutation. HeterozygousScn1aR613X mutation on a mixed C57BL/6J:129S1/SvImJ background exhibited spontaneous seizures, susceptibility to heat-induced seizures, and premature mortality, recapitulating the core epileptic phenotypes of Dravet. In addition, these mice, available as an open-access model, demonstrated increased locomotor activity in the open-field test, mimicking some non-epileptic Dravet-associated comorbidities. Conversely,Scn1aWT/R613Xmice on the pure 129S1/SvImJ background had a normal life span and were easy to breed. HomozygousScn1aR613X/R613Xmice died before P16.Our molecular analyses of hippocampal and cortical expression demonstrated that the premature stop codon induced by the R613X mutation reducedScn1amRNA and Nav1.1 protein levels to ~50% in heterozygousScn1aWT/R613Xmice, with marginal expression in homozygousScn1aR613X/R613Xmice. Together, we introduce a novel Dravet model carrying the R613XScn1anonsense mutation that can. be used to study the molecular and neuronal basis of Dravet, as well as the development of new therapies associated withSCN1Anonsense mutations in Dravet.</jats:p

    Exogenous Na<sub>V</sub>1.1 activity in excitatory and inhibitory neurons reverts Dravet syndrome comorbidities when delivered post-symptom onset in mice with Dravet

    Full text link
    AbstractDravet syndrome (DS), an intractable childhood epileptic encephalopathy with a high fatality rate, is caused by loss-of-function mutations in one allele of SCN1A, which encodes NaV1.1. In contrast to other epilepsies, pharmaceutical treatment for DS is limited. Here, we demonstrate that viral vector-mediated delivery of a codon-modified SCN1A cDNA improves DS comorbidities in juvenile and adolescent DS mice (Scn1aA1783V/WT). Notably, bilateral vector injections into the hippocampus or thalamus of DS mice improved the survival of the mice, reduced the occurrence of epileptic spikes, provided protection from thermally-induced seizures, and corrected background electrocorticography activity. Together, our results provide a proof-of-concept for the potential of SCN1A delivery as a therapeutic approach for infants and adolescents with DS-associated comorbidities.</jats:p

    Viral vector–mediated expression of NaV1.1, after seizure onset, reduces epilepsy in mice with Dravet syndrome

    No full text
    International audienceDravet syndrome (DS), an intractable childhood epileptic encephalopathy with a high fatality rate, is typically caused by loss-of-function mutations in one allele of SCN1A, which encodes NaV1.1, a 250-kDa voltage-gated sodium channel. In contrast to other epilepsies, pharmaceutical treatment for DS is limited. Here, we demonstrate that viral vector–mediated delivery of a codon-modified SCN1A open reading frame into the brain improves DS comorbidities in juvenile and adolescent DS mice (Scn1aA1783V/WT). Notably, bilateral vector injections into the hippocampus and/or the thalamus of DS mice increased survival, reduced the occurrence of epileptic spikes, provided protection from thermally induced seizures, corrected background electrocorticographic activity and behavioral deficits, and restored hippocampal inhibition. Together, our results provide a proof of concept for the potential of SCN1A delivery as a therapeutic approach for infants and adolescents with DS-associated comorbidities

    Video_1_Heat-induced seizures, premature mortality, and hyperactivity in a novel Scn1a nonsense model for Dravet syndrome.mp4

    No full text
    Dravet syndrome (Dravet) is a severe congenital developmental genetic epilepsy caused by de novo mutations in the SCN1A gene. Nonsense mutations are found in ∼20% of the patients, and the R613X mutation was identified in multiple patients. Here we characterized the epileptic and non-epileptic phenotypes of a novel preclinical Dravet mouse model harboring the R613X nonsense Scn1a mutation. Scn1aWT/R613X mice, on a mixed C57BL/6J:129S1/SvImJ background, exhibited spontaneous seizures, susceptibility to heat-induced seizures, and premature mortality, recapitulating the core epileptic phenotypes of Dravet. In addition, these mice, available as an open-access model, demonstrated increased locomotor activity in the open-field test, modeling some non-epileptic Dravet-associated phenotypes. Conversely, Scn1aWT/R613X mice, on the pure 129S1/SvImJ background, had a normal life span and were easy to breed. Homozygous Scn1aR613X/R613X mice (pure 129S1/SvImJ background) died before P16. Our molecular analyses of hippocampal and cortical expression demonstrated that the premature stop codon induced by the R613X mutation reduced Scn1a mRNA and NaV1.1 protein levels to ∼50% in heterozygous Scn1aWT/R613X mice (on either genetic background), with marginal expression in homozygous Scn1aR613X/R613X mice. Together, we introduce a novel Dravet model carrying the R613X Scn1a nonsense mutation that can be used to study the molecular and neuronal basis of Dravet, as well as the development of new therapies associated with SCN1A nonsense mutations in Dravet.</p
    corecore