29 research outputs found

    Modeling experimental glaucoma for screening studies of antiglaucomatous activity

    Get PDF
    Introduction: In vivo screening studies, in which the efficacy of dozens of drugs is tested to select several applicants for further study of their safety in humans, are the main stage in the study of the pharmacodynamics of promising antiglaucoma drugs. This imposes a number of specific requirements both on experimental models of glaucoma and on laboratory animals used in the experiment. Materials and Methods: 32 male rabbits of the Soviet Сhinchilla breed, 6 male albino rabbits weighing 3-3.5 kg, and 20 outbred white rats weighing 220-250 g were used in total in experiments to reproduce the glaucoma process. All manipulations on the rabbit eye were performed by an ophthalmologist under general anesthesia with telazol. Triamcinolone (vitreous injection) was used to simulate glaucoma in rabbits, lauromacrogol 400 or fine kaolin (anterior chamber injection) was used to simulate glaucoma in rabbits; adrenaline hydrochloride (intraperitoneal administration) was used to simulate glaucoma in rats. Results and Discussion: Double intravitreal administration of a suspension of triamcinolone at a dose of 4 mg was the most attractive model in terms of the technique of reproducing the pathology and the results obtained in modeling glaucoma in rabbits. However, this model did not produce a stable increase in intraocular pressure (IOP). Doubling the dose of triamcinolone and replacing chinchilla rabbits with albinos did not lead to a positive result. The introduction of the venous sclerosing drug lauromacrogol 400 into the anterior chamber of the eye proved to be ineffective either. The introduction of finely dispersed kaolin into the anterior chamber of the eye of rabbits led to a persistent increase in IOP. The intraperitoneal administration of epinephrine hydrochloride to rats according to the described method gave no stable results. The increase in IOP became stable only after a significant increase in the dose of adrenaline. Conclusion: The conducted studies of four models of glaucoma and their three modifications in animals made it possible to select two of them, which contributed to a stable and fairly long-term increase in IOP in rabbits (introduction of finely dispersed kaolin into the anterior chamber of the eye) and rats (adrenaline-induced model)

    Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two strains of the silver fox (<it>Vulpes vulpes</it>), with markedly different behavioral phenotypes, have been developed by long-term selection for behavior. Foxes from the tame strain exhibit friendly behavior towards humans, paralleling the sociability of canine puppies, whereas foxes from the aggressive strain are defensive and exhibit aggression to humans. To understand the genetic differences underlying these behavioral phenotypes fox-specific genomic resources are needed.</p> <p>Results</p> <p>cDNA from mRNA from pre-frontal cortex of a tame and an aggressive fox was sequenced using the Roche 454 FLX Titanium platform (> 2.5 million reads & 0.9 Gbase of tame fox sequence; >3.3 million reads & 1.2 Gbase of aggressive fox sequence). Over 80% of the fox reads were assembled into contigs. Mapping fox reads against the fox transcriptome assembly and the dog genome identified over 30,000 high confidence fox-specific SNPs. Fox transcripts for approximately 14,000 genes were identified using SwissProt and the dog RefSeq databases. An at least 2-fold expression difference between the two samples (p < 0.05) was observed for 335 genes, fewer than 3% of the total number of genes identified in the fox transcriptome.</p> <p>Conclusions</p> <p>Transcriptome sequencing significantly expanded genomic resources available for the fox, a species without a sequenced genome. In a very cost efficient manner this yielded a large number of fox-specific SNP markers for genetic studies and provided significant insights into the gene expression profile of the fox pre-frontal cortex; expression differences between the two fox samples; and a catalogue of potentially important gene-specific sequence variants. This result demonstrates the utility of this approach for developing genomic resources in species with limited genomic information.</p

    3rd International Research Conference “Medievistika: novye imena” [Medieval Studies: The New Names] (September 27-28, 2016)

    No full text
    Конференция «Медиевистика: новые имена» — это ежегодное научное мероприятие Института истории и политических наук ТюмГУ. Впервые она состоялась осенью 2014 г. в статусе межрегиональной, в 2016 г. повысила свой статус до международной. Организатором мероприятия является кафедра археологии, истории Древнего мира и Средних веков, возглавляемая профессором Александром Емановым. Тематическим приоритетом выступает изучение Средних веков, а целью конференции является поиск свежих подходов, открытие «новых имен» среди молодых ученых-медиевистов, готовых оставить свой след в исторической . The conference “Medievistika: novye imena” [Medieval Studies: The New Names] is an annual scientific event held by the Institute of History and Political Sciences of Tyumen State University. First it was organized in autumn 2014 as an interregional conference, and in 2016 its reached the international level. The event organizer is the Department of Archeology, History of the Ancient World and the Middle Ages headed by Professor Alexander Emanov. Devoted to the Middle Ages studies, the conference aims to search for fresh approaches and to open “new names” among young scientists

    Acinetobacter baumannii K20 and K21 capsular polysaccharide structures establish roles for UDP-glucose dehydrogenase Ugd2, pyruvyl transferase Ptr2 and two glycosyltransferases

    No full text
    Infections caused by Acinetobacter baumannii isolates from the major global clones, GC1 and GC2, are difficult to treat with antibiotics, and phage therapy, which requires extensive knowledge of the variation in the surface polysaccharides, is an option under consideration. The gene clusters directing the synthesis of capsular polysaccharide (CPS) in A. baumannii GC1 isolate A388 and GC2 isolate G21 differ by a single glycosyltransferase (gtr) gene. They include genes encoding a novel UDP-glucose dehydrogenase (Ugd2) and a putative pyruvyl transferase (Ptr2). The composition and structures of the linear K20 and K21 tetrasaccharide repeats (K units) of the CPSs isolated from A338 and G21, respectively, were established by sugar analyses and Smith degradation along with 1D and 2D 1H and 13C NMR spectroscopy. The K20 and K21 CPSs are the first known to include GlcpA produced by Ugd2 and d-galactose with an (R)-configured 4,6-pyruvic acid acetal added by Prt2. The first sugar in the tetrasaccharide K units is 2-acetamido-4-amino-2,4,6-trideoxy-d-glucose (d-QuipNAc4N) that carries a 4-N-[(S)-3-hydroxybutanoyl] group in some K units and a 4-N-acetyl group in the others. Accordingly, K unit polymerases WzyK20 and WzyK21 form a β-d-QuipNAc4NR-(1→2)-d-Galp bond. The K20 and K21 units differ only in the configuration of the glycosidic linkages of d-GlcpNAc allowing the unique inverting glycosyltransferases Gtr43 and the retaining glycosyltransferase Gtr45 to be assigned to the formation of the β-d-GlcpNAc-(1→4)-d-GlcpA and α-d-GlcpNAc-(1→4)-d-GlcpA linkages, respectively.</p

    The K89 capsular polysaccharide produced by Acinetobacter baumannii LUH5552 consists of a pentameric repeat-unit that includes a 3-acetamido-3,6-dideoxy-D-galactose residue

    No full text
    Acinetobacter baumannii isolate LUH5552 carries the KL89 capsule biosynthesis gene cluster. Capsular polysaccharide (CPS) isolated from LUH5552 was analyzed by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The K89 CPS structure has not been seen before in A. baumannii CPS structures resolved to date and includes a 3-acetamido-3,6-dideoxy-D-galactose (D-Fucp3NAc) residue which is rare amongst A. baumannii CPS. The K89 CPS has a →3)-α-D-GalpNAc-(1→3)-β-D-GlcpNAc-(1→ main chain with a β-D-Glcp-(1→2)-β-D-Fucp3NAc-(1→6)-D-Glcp side branch that is α-(1→4) linked to D-GalpNAc. The roles of the Wzy polymerase and the four glycosyltransferases encoded by the KL89 gene cluster in the biosynthesis of the K89 CPS were assigned. Two glycosyltransferases, Gtr121 and Gtr122, link the D-Fucp3NAc to its neighboring sugars.</p

    The K46 and K5 capsular polysaccharides produced by Acinetobacter baumannii NIPH 329 and SDF have related structures and the side-chain non-ulosonic acids are 4-O-acetylated by phage-encoded O-acetyltransferases.

    No full text
    Acinetobacter baumannii isolate NIPH 329 carries a novel capsular polysaccharide (CPS) gene cluster, designated KL46, that is closely related to the KL5 locus in A. baumannii isolate SDF but includes genes for synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic (di-N-acetylpseudaminic) acid (Pse5Ac7Ac) instead of the corresponding D-glycero-D-galacto isomer (di-N-acetyllegionaminic acid) (Leg5Ac7Ac). In agreement with the genetic content of KL46, chemical studies of the K46 CPS produced by NIPH 329 revealed a branched tetrasaccharide repeat (K unit) with an overall structure the same as K5 from SDF but with â-Pse5Ac7Ac replacing α-Leg5Ac7Ac. As for K5, the K46 unit begins with d-GalpNAc and includes α-d-GlcpNAc-(1→3)-d-GalpNAc and α-d-Galp-(1→6)-d-GlcpNAc linkages, formed by Gtr14 and Gtr15 glycosyltransferases, respectively. The Gtr94K46 glycosyltransferase, which is related to Gtr13K5, links Pse5Ac7Ac to d-Galp in the growing K unit via a â-(2→6) linkage. Nearly identical Wzy enzymes connect the K46 and K5 units via a α-D-GalpNAc-(1→3)-α-D-Galp linkage to form closely related CPSs. Both Pse5Ac7Ac in K46 and Leg5Ac7Ac in K5 are acetylated at O4 but no acetyltransferase gene is present in KL46 or KL5. Related acetyltransferases were found encoded in the NIPH 329 and SDF genomes, but not in other strains carrying an unacetylated Pse or Leg derivative in the CPS. The genes encoding the acetyltransferases were in different putative phage genomes. However, related acetyltransferases were rare among the >3000 publically available genome sequences

    Correlation of Acinetobacter baumannii K144 and K86 capsular polysaccharide structures with genes at the K locus reveals the involvement of a novel multifunctional rhamnosyltransferase for structural synthesis

    No full text
    Whole genome sequence from Acinetobacter baumannii isolate Ab-46-1632 reveals a novel KL144 capsular polysaccharide (CPS) biosynthesis gene cluster, which carries genes for D-glucuronic acid (D-GlcA) and L-rhamnose (L-Rha) synthesis. The CPS was extracted from Ab-46-1632 and studied by 1H and 13C NMR spectroscopy, including a two-dimensional 1H,13C HMBC experiment and Smith degradation. The CPS was found to have a hexasaccharide repeat unit composed of four L-Rhap residues and one residue each of D-GlcpA and N-acetyl-D-glucosamine (D-GlcpNAc) consistent with sugar synthesis genes present in KL144. The K144 CPS structure was established and found to be related to those of A. baumannii K55, K74, K85, and K86. A comparison of the corresponding gene clusters to KL144 revealed a number of shared glycosyltransferase genes correlating to shared glycosidic linkages in the structures. One from the enzymes, encoded by only KL144 and KL86, is proposed to be a novel multifunctional rhamnosyltransfaerase likely responsible for synthesis of a shared α-L-Rhap-(1 → 2)-α-L-Rhap-(1 → 3)-L-Rhap trisaccharide fragment in the K144 and K86 structures.</p

    The K26 capsular polysaccharide from Acinetobacter baumannii KZ-1098: Structure and cleavage by a specific phage depolymerase

    No full text
    The KL26 gene cluster responsible for the synthesis of the K26 capsular polysaccharide (CPS) of Acinetobacter baumannii includes rmlBDAC genes for L-rhamnose (L-Rhap) synthesis, tle to generate 6-deoxy-L-talose (L-6dTalp) from L-Rhap, and a manC gene for D-mannose (D-Manp) that is rare in Acinetobacter CPS. K26 CPS material was isolated from A. baumannii isolate KZ-1098, and studied by sugar analysis, Smith degradation, and one and two-dimensional 1H and 13C NMR spectroscopy before and after O-deacetylation with aqueous ammonia. The following structure of the branched hexasaccharide repeating unit of the CPS was established: →2)−β−D−Manp−1→4−β−D−Glcp−1→3−α−L−6dTalp−1→3−β−D−GlcpNAc−( 1→                3                                                   4                ↑                                                  │                1                                                  Acα−L−Rhap−2←1−α−D−Glcp The structural depolymerase of phage vB_AbaP_APK26 cleaved selectively the β-GlcpNAc-(1 → 2)-α-Manp linkage in the K26 CPS formed by WzyK26 to give monomer, dimer, and trimer of the CPS repeating unit, which were characterized by high-resolution electrospray ionization mass spectrometry as well as 1H and 13C NMR spectroscopy. The wzyK26 gene responsible for this linkage and the manC gene were only found in six A. baumannii genomes carrying KL26 and one carrying the novel KL148 gene cluster, indicating the rare occurrence of β-GlcpNAc-(1 → 2)-α-Manp in A. baumannii CPS structures. However, K26 shares a β-D-Glcp-(1 → 3)-α-L-6dTalp-(1 → 3)-β-D-GlcpNAc trisaccharide fragment with a group of related A. baumannii CPSs that have varying patterns of acetylation of L-6dTalp.</p

    Acinetobacter baumannii k106 and k112: Two structurally and genetically related 6-deoxy-l-talose-containing capsular polysaccharides

    No full text
    Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of L-rhamnose (L-Rhap) and 6-deoxy-L-talose (L-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one-and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) L-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α L-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.</p
    corecore