4 research outputs found

    Chemical Composition and Microstructural Morphology of Spines and Tests of Three Common Sea Urchins Species of the Sublittoral Zone of the Mediterranean Sea

    No full text
    In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The present study describes the main morphologic features and the possible temporal differences in elemental composition of the test and spines of the three species, while also determining the molar ratio of each element of their crystalline phase. Scanning electron microscopy showed major differences in the ultrastructure of the spines, while minor differences in the test were also noticed. More specifically, the spines of all three sea urchins possess wedges, however A. lixula exhibits bridges connecting each wedge, while barbs are observed in the wedges of S. granularis. The spines of P. lividus are devoid of both microstructures. Secondary tubercles are absent in the test of A. lixula, while the tests and spines of all three species are characterized by different superficial stereom. Energy dispersive x-ray spectroscopy detected that Ca, Mg, S, Na and Cl were present in all specimen. Mg and Mg/Ca showed significant differences between species both in test and spines with S. granularis having the highest concentration. The spines of P. lividus exhibited lowest values between all species. Differences between spines and test were observed in all elements for P. lividus except S. A. lixula exhibited different concentrations between test and spines for Ca, Mg and Mg/Ca, whereas S. granularis for Mg, Cl and Mg/Ca. Finally, temporal differences for Ca were observed in the test of P. lividus and the spines of S. granularis, for Mg in test of S. granularis, for S in the spines of A. lixula and the test and spine of S. granularis, for Na in the test of P. lividus and A. lixula and for Cl and Mg/Ca in the test P. lividus. Powder X-ray diffractometry determined that, out of all three species, the spines of P. lividus contained the least Mg, while the test of the same species exhibited higher Mg concentration compared to A. lixula and S. granularis. The current study, although not labeling the specimens attempts to estimate potential time-related elemental differences among other results. These may occur due to changes in abiotic factors, probably water temperature, salinity and/or pH. Divergence in food preference and food availability may also play a key role in possible temporal differences the skeletons of these specie

    Size Structure of Exploited Holothurian Natural Stocks in the Hellenic Seas

    No full text
    Size limitations are commonly applied as regulatory measures for the sustainable management of marine invertebrate fishery resources. However, the setting of biologically meaningful size limits in holothurians is puzzling, due to the limited knowledge of their biology and the great plasticity in size and weight, owing to the increased contractibility of their body, and the large quantity and variability of their coelomic fluid. To evaluate the efficiency of official size limits in Hellenic fishery regulation, the biometry of the exploited species, i.e., H. tubulosa, H. poli, H. mammata, and H. sanctori, was assessed in the main fishery grounds of the Hellenic Seas. Specimens of all four species were haphazardly collected and measured for total length and drained body weight at 46 sampling sites dispersed in the north Aegean, the Sporades, the Cyclades, the Dodecanese, and the Ionian fishery grounds. According to presented results, the official size limit of 180 g for drained weight appeared to be adequate for H. tubulosa and H. mammata. Adjustment of the relevant regulations for H. poli and H. sanctori are suggested by reduction to 140 g for the former and increment to 200 g for the latter species, to better fit their biological traits

    Chemical composition and microstructural morphology of spines and tests of three common sea urchins species of the sublittoral zone of the Mediterranean Sea

    No full text
    Summarization: In the Mediterranean Sea, the species Arbacia lixula, Paracentrotus lividus and Sphaerechinus granularis often coexist, occupying different subareas of the same habitat. The mechanical and chemical properties of their calcitic skeletons are affected both by their microstructural morphology and chemical composition. The present study describes the main morphologic features and the possible temporal differences in elemental composition of the test and spines of the three species, while also determining the molar ratio of each element of their crystalline phase. Scanning electron microscopy showed major differences in the ultrastructure of the spines, while minor differences in the test were also noticed. More specifically, the spines of all three sea urchins possess wedges, however A. lixula exhibits bridges connecting each wedge, while barbs are observed in the wedges of S. granularis. The spines of P. lividus are devoid of both microstructures. Secondary tubercles are absent in the test of A. lixula, while the tests and spines of all three species are characterized by different superficial stereom. Energy dispersive x-ray spectroscopy detected that Ca, Mg, S, Na and Cl were present in all specimen. Mg and Mg/Ca showed significant differences between species both in test and spines with S. granularis having the highest concentration. The spines of P. lividus exhibited lowest values between all species. Differences between spines and test were observed in all elements for P. lividus except S. A. lixula exhibited different concentrations between test and spines for Ca, Mg and Mg/Ca, whereas S. granularis for Mg, Cl and Mg/Ca. Finally, temporal differences for Ca were observed in the test of P. lividus and the spines of S. granularis, for Mg in test of S. granularis, for S in the spines of A. lixula and the test and spine of S. granularis, for Na in the test of P. lividus and A. lixula and for Cl and Mg/Ca in the test P. lividus. Powder X-ray diffractometry determined that, out of all three species, the spines of P. lividus contained the least Mg, while the test of the same species exhibited higher Mg concentration compared to A. lixula and S. granularis. The current study, although not labeling the specimens attempts to estimate potential time-related elemental differences among other results. These may occur due to changes in abiotic factors, probably water temperature, salinity and/or pH. Divergence in food preference and food availability may also play a key role in possible temporal differences the skeletons of these speciesΠαρουσιάστηκε στο: Animal

    Mechanical defensive adaptations of three Mediterranean sea urchin species

    No full text
    Summarization: In the Mediterranean, Paracentrotus lividus and Sphaerechinus granularis are important drivers of benthic ecosystems, often coexisting in sublittoral communities. However, the introduction of the invasive diadematoid Diadema setosum, which utilizes venomous spines, may affect these communities. To describe the mechanical properties of the test and spines of these three species, specimens were collected in winter of 2019 from the sublittoral zone of the Dodecanese island complex, southeastern Aegean Sea. This region serves as a gateway for invasive species to the Mediterranean Sea. Crushing test was conducted on live individuals, while 3-point bending test was used to estimate spine stiffness. Porosity and mineralogy of the test and spine, thickness of the test, and breaking length of the spine were measured and compared, while the microstructural architecture was also determined. The test of S. granularis was the most robust (194.35 ± 59.59 N), while the spines of D. setosum (4.76 ± 2.13 GPa) exhibited highest flexibility. Increased porosity and thickness of the test were related to increased robustness, whereas increased flexibility of the spine was attributed to high porosity, indicating that porosity in the skeleton plays a key role in preventing fracture. The spines of S. granularis exhibited highest length after fracture % (71.54 ± 5.5%). D. setosum exhibited higher values of Mg concentration in the test (10%) compared with the spines (4%). For the first time, the mineralogy of an invasive species is compared with its native counterpart, while a comparison of the mechanical properties of different species of the same ecosystem also takes place. This study highlights different ways, in which sea urchins utilize their skeleton and showcases the ecological significance of these adaptations, one of which is the different ways of utilization of the skeleton for defensive purposes, while the other is the ability of D. setosum to decrease the Mg % of its skeleton degrading its mechanical properties, without compromising its defense, by depending on venomous bearing spines. This enables this species to occupy not only tropical habitats, where it is indigenous, but also temperate like the eastern Mediterranean, which it has recently invaded.Presented on: Ecology and Evolutio
    corecore