4 research outputs found

    Distinct Traits of Structural and Regulatory Evolutional Conservation of Human Genes with Specific Focus on Major Cancer Molecular Pathways

    No full text
    The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution

    Biocatalysis of Industrial Kraft Pulps: Similarities and Differences between Hardwood and Softwood Pulps in Hydrolysis by Enzyme Complex of Penicillium verruculosum

    No full text
    Kraft pulp enzymatic hydrolysis is a promising method of woody biomass bioconversion. The influence of composition and structure of kraft fibers on their hydrolysis efficiency was evaluated while using four substrates, unbleached hardwood pulp (UHP), unbleached softwood pulp (USP), bleached hardwood pulp (BHP), and bleached softwood pulp (BSP). Hydrolysis was carried out with Penicillium verruculosum enzyme complex at a dosage of 10 filter paper units (FPU)/g pulp. The changes in fiber morphology and structure were visualized while using optical and electron microscopy. Fiber cutting and swelling and quick xylan destruction were the main processes at the beginning of hydrolysis. The negative effect of lignin content was more pronounced for USP. Drying decreased the sugar yield of dissolved hydrolysis products for all kraft pulps. Fiber morphology, different xylan and mannan content, and hemicelluloses localization in kraft fibers deeply affected the hydrolyzability of bleached pulps. The introduction of additional xylobiase, mannanase, and cellobiohydrolase activities to enzyme mixture will further improve the hydrolysis of bleached pulps. A high efficiency of never-dried bleached pulp bioconversion was shown. At 10% substrate concentration, hydrolysates with more than 50 g/L sugar concentration were obtained. The bioconversion of never-dried BHP and BSP could be integrated into working kraft pulp mills

    Large-scale assessment of pros and cons of autopsy-derived or tumor-matched tissues as the norms for gene expression analysis in cancers

    No full text
    Normal tissues are essential for studying disease-specific differential gene expression. However, healthy human controls are typically available only in postmortal/autopsy settings. In cancer research, fragments of pathologically normal tissue adjacent to tumor site are frequently used as the controls. However, it is largely underexplored how cancers can systematically influence gene expression of the neighboring tissues. Here we performed a comprehensive pan-cancer comparison of molecular profiles of solid tumor-adjacent and autopsy-derived “healthy” normal tissues. We found a number of systemic molecular differences related to activation of the immune cells, intracellular transport and autophagy, cellular respiration, telomerase activation, p38 signaling, cytoskeleton remodeling, and reorganization of the extracellular matrix. The tumor-adjacent tissues were deficient in apoptotic signaling and negative regulation of cell growth including G2/M cell cycle transition checkpoint. We also detected an extensive rearrangement of the chemical perception network. Molecular targets of 32 and 37 cancer drugs were over- or underexpressed, respectively, in the tumor-adjacent norms. These processes may be driven by molecular events that are correlated between the paired cancer and adjacent normal tissues, that mostly relate to inflammation and regulation of intracellular molecular pathways such as the p38, MAPK, Notch, and IGF1 signaling. However, using a model of macaque postmortal tissues we showed that for the 30 min – 24-hour time frame at 4ÂșC, an RNA degradation pattern in lung biosamples resulted in an artifact “differential” expression profile for 1140 genes, although no differences could be detected in liver. Thus, such concerns should be addressed in practice
    corecore