21 research outputs found

    Эксперты об «Умном городе»: проблемы восприятия

    Get PDF
    Based on the materials of an empirical study conducted in 2021 among experts from Yekaterinburg, the authors consider the goals, tasks and problems of implementing the concept of “Smart City”. Representatives of science, education, mass media, legislative and executive authorities, political analysts examine the main aspects of the concept, the tasks of including different groups of the public in its creation. The authors note that in Yekaterinburg, as a major scientific and educational center of the region, there are professional and other associations of residents who are ready to actively participate in devising plans for the innovative development of the regional center. The paper shows that at the moment many experts do not have enough information about the content of the concept of “Smart City” both in Russia and in Yekaterinburg. So far it has been based on the idea of broad digitalization of all spheres of decision-making and implementation of management in the interaction of government with the population. The authors conclude that science and education should become the engines of the creation and implementation in practice of its main provisions to ensure the innovative development of a large metropolis.На материалах эмпирического исследования, проведенного в 2021 году среди экспертов из Екатеринбурга, рассматриваются цели, задачи и проблемы реализации концепции «Умного города». Представители науки, образования, средств массовой информации, законодательной и исполнительной власти, политологи анализируют основные аспекты концепции, задачи включения в ее создание разных групп общественности. Отмечается, что в Екатеринбурге как крупном научном и образовательном центре региона существуют профессиональные и иные объединения жителей, готовых активно участвовать в разработке планов инновационного развития областного центра. Показано, что в настоящее время многие эксперты не имеют достаточной информацией о содержании концепции «Умного города» как в России, так и в Екатеринбурге, пока она строится на идее широкой цифровизации всех сфер принятия и реализации управленческих решений в процессе взаимодействия органов управления с населением. Делается вывод, что наука и образование должны стать локомотивами создания и воплощения на практике ее основных положений для обеспечения инновационного развития крупного мегаполиса

    Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis

    Get PDF
    Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content

    Quantitative Assessment of Dentinal Tubule Disinfection in Absence of Biofilm on Root Canal Walls: An in vitro Study

    Get PDF
    Introduction: This study aimed at assessing the quantitative effect of calcium hydroxide, 2% chlorhexidine gel, and 1.5% chlorhexidine linked to xanthan gel specifically against intratubular bacteria. Methods and Materials: Fifty-two semi-cylindrical bovine dentin specimens were infected with Enterococcus (E.) faecalis by centrifugation with subsequent 7-days incubation. The surface of specimens was disinfected with 3% H2O2. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and the count of bacterial colony-forming units (CFU/mg) were used to assess dentin infection. A total of 40 specimens were incubated for 2 weeks with one of the intracanal medication applied (10 samples for each group): 1) calcium hydroxide, 2) 2% chlorhexidine gel, 3) 1.5% chlorhexidine linked to xanthan gel and 4) sterile saline. Final passive ultrasonic irrigation with 3% sodium hypochlorite was performed in half of the total specimens. The effect of intracanal medications and irrigation against intratubular bacteria was assessed by bacterial culturing of dentin shavings. Two-Way ANOVA model was applied followed by post-hoc Tukey's test for multiple pair-wise comparisons of mean CFU/mg values. Results: SEM, CLSM, and bacterial culturing confirmed the absence of the surface biofilm on the root canal wall and showed vital intratubular bacteria at the depth up to 700 mm. Two-week application of 1.5% chlorhexidine with xanthan gel and 2% chlorhexidine gel significantly decreased intratubular bacterial counts compared with saline (P=0.0003 and P=0.0005, respectively). Subsequent passive ultrasonic irrigation with 3% sodium hypochlorite significantly reduced the number of intratubular bacteria in all groups except for the group with 1.5% chlorhexidine-xanthan gel (P=0.0054). Conclusion: This modified ex vivo model study showed ultrasonically activated irrigation with sodium hypochlorite had greater effect on intratubular bacteria counts compared with 2-week application of intracanal medications

    Fibroblasts upregulate expression of adhesion molecules and promote lymphocyte retention in 3D fibroin/gelatin scaffolds

    No full text
    Bioengineered scaffolds are crucial components in artificial tissue construction. In general, these scaffolds provide inert three-dimensional (3D) surfaces supporting cell growth. However, some scaffolds can affect the phenotype of cultured cells, especially, adherent stromal cells, such as fibroblasts. Here we report on unique properties of 3D fibroin/gelatin materials, which may rapidly induce expression of adhesion molecules, such as ICAM-1 and VCAM-1, in cultured primary murine embryonic fibroblasts (MEFs). In contrast, two-dimensional (2D) fibroin/gelatin films did not show significant effects on gene expression profiles in fibroblasts as compared to 3D culture conditions. Interestingly, TNF expression was induced in MEFs cultured in 3D fibroin/gelatin scaffolds, while genetic or pharmacological TNF ablation resulted in diminished ICAM-1 and VCAM-1 expression by these cells. Using selective MAPK inhibitors, we uncovered critical contribution of JNK to 3D-induced upregulation of these adhesion molecules. Moreover, we observed ICAM-1/VCAM-1-dependent adhesion of lymphocytes to fibroblasts cultured in 3D fibroin/gelatin scaffolds, but not on 2D fibroin/gelatin films, suggesting functional reprogramming in stromal cells, when exposed to 3D environment. Finally, we observed significant infiltration of lymphocytes into 3D fibroin/gelatin, but not into collagen scaffolds in vivo upon subcapsular kidney implantation in mice. Together our data highlight the important features of fibroin/gelatin scaffolds, when they are produced as 3D sponges rather than 2D films, which should be considered when using these materials for tissue engineering

    Chromatin Liquid–Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length

    No full text
    The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid–liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies. These inconsistencies are partially due to deviations in the in vitro buffer conditions that induce the condensation/aggregation of chromatin as well as to differences in chromatin (nucleosome array) constructs used in the studies. In this work, we present a detailed characterization of the effects of K+, Mg2+ and nucleosome fiber length on the physical state and property of reconstituted nucleosome arrays. LLPS was generally observed for shorter nucleosome arrays (15-197-601, reconstituted from 15 repeats of the Widom 601 DNA with 197 bp nucleosome repeat length) at physiological ion concentrations. In contrast, gel- or solid-like condensates were detected for the considerably longer 62-202-601 and lambda DNA (~48.5 kbp) nucleosome arrays under the same conditions. In addition, we demonstrated that the presence of reduced BSA and acetate buffer is not essential for the chromatin LLPS process. Overall, this study provides a comprehensive understanding of several factors regarding chromatin physical states and sheds light on the mechanism and biological relevance of chromatin phase separation in vivo

    Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer.

    No full text
    Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters
    corecore