3 research outputs found

    Morphological, histochemical and biochemical features of cultivated Rhodiola rosea (Altai Mountains ecotype)

    No full text
    The study analyzed the content and localization of phenolic compounds, in particular phenylpropanoids, of Rodiola rosea plants of Altai Mountains ecotype during the introduction period of 2–4 years in the conditions of the forest-steppe zone of Western Siberia. The plant material for the introduction experiment was obtained by in vitro method. HPLC was used to identify 11 phenolic compounds, including gallic acid, rosarin, rosavin, rosin, cinnamyl alcohol, rhodiosin, rhodionin, and kaempferol. The highest content of phenylpropenoids was found in rhizomes of the 4-year-old R. rosea plants: 1.02% rosarin, 2.64% rosavin, 1.05% rosin, 3.39% cinnamyl alcohol. Analysis of the phenylpropanoid profile showed that the predominant component in all the studied samples was cinnamyl alcohol (up to 58%). Histochemical studies identified phenolic substances in the rhizomes and roots of R. rosea, which are localized in parenchymal and vascular tissues. It was revealed that the total rhizome biomass exceeded that of the root, and by the 4th year of introduction, it was approximately 2-fold greater in dry weight. The study showed high biosynthetic potential and biological productivity of the studied R. rosea ecotype upon introduction

    Optimization of Biomass Accumulation and Production of Phenolic Compounds in Callus Cultures of <i>Rhodiola rosea</i> L. Using Design of Experiments

    No full text
    Rhodiola rosea L. is a valuable medicinal plant with adaptogenic, neuroprotective, antitumor, cardioprotective, and antidepressant effects. In this study, design of experiments methodology was employed to analyze and optimize the interacting effects of mineral compounds (concentration of NO3− and the ratio of NH4+ to K+) and two plant growth regulators [total 6-benzylaminopurine (BAP) and α-naphthylacetic acid (NAA) concentration and the ratio of BAP to NAA] on the growth and the production of total phenolic compounds (TPCs) in R. rosea calluses. The overall effect of the model was highly significant (p 4+, K+, NO3−, BAP, and NAA significantly affected growth. The best callus growth (703%) and the highest production of TPCs (75.17 mg/g) were achieved at an NH4+/K+ ratio of 0.33 and BAP/NAA of 0.33, provided that the concentration of plant growth regulators was 30 μM and that of NO3− was ≤40 mM. According to high-performance liquid chromatography analyses of aerial parts (leaves and stems), in vitro seedlings and callus cultures of R. rosea contain no detectable rosarin, rosavin, rosin, and cinnamyl alcohol. This is the first report on the creation of an experiment for the significant improvement of biomass accumulation and TPC production in callus cultures of R. rosea
    corecore