3 research outputs found

    Nanocarrier Composed of Magnetite Core Coated with Three Polymeric Shells Mediates LCS‑1 Delivery for Synthetic Lethal Therapy of BLM-Defective Colorectal Cancer Cells

    No full text
    Synthetic lethality is a molecular-targeted therapy for selective killing of cancer cells. We exploited a lethal interaction between superoxide dismutase 1 inhibition and Bloom syndrome gene product (BLM) defect for the treatment of colorectal cancer (CRC) cells (HCT 116) with a customized lung cancer screen-1-loaded nanocarrier (LCS-1-NC). The drug LCS-1 has poor aqueous solubility. To overcome its limitations, a customized NC, composed of a magnetite core coated with three polymeric shells, namely, aminocellulose (AC), branched poly­(amidoamine), and paraben-PEG, was developed for encapsulating LCS-1. Encapsulation efficiency and drug loading were found to be 74% and 8.2%, respectively. LCS-1-NC exhibited sustained release, with ∼85% of drug release in 24 h. Blank NC (0.5 mg/mL) exhibited cytocompatibility toward normal cells, mainly due to the AC layer. LCS-1-NC demonstrated high killing selectivity (104 times) toward BLM-deficient HCT 116 cells over BLM-proficient HCT 116 cells. Due to enhanced efficacy of the drug using NC, the sensitivity difference for BLM-deficient cells increased to 1.7 times in comparison to that with free LCS-1. LCS-1-NC induced persistent DNA damage and apoptosis, which demonstrates that LCS-1-NC effectively and preferentially killed BLM-deficient CRC cells. This is the first report on the development of a potential drug carrier to improve the therapeutic efficacy of LCS-1 for specific killing of CRC cells having BLM defects

    Caffeic Acid-Conjugated Budesonide-Loaded Nanomicelle Attenuates Inflammation in Experimental Colitis

    No full text
    Ulcerative colitis is a multifactorial disease of the gastrointestinal tract which is caused due to chronic inflammation in the colon; it usually starts from the lower end of the colon and may spread to other portions of the large intestine, if left unmanaged. Budesonide (BUD) is a synthetically available second-generation corticosteroidal drug with potent local anti-inflammatory activity. The pharmacokinetic properties, such as extensive first-pass metabolism and quite limited bioavailability, reduce its therapeutic efficacy. To overcome the limitations, nanosized micelles were developed in this study by conjugating stearic acid with caffeic acid to make an amphiphilic compound. The aim of the present study was to evaluate the pharmacological potential of BUD-loaded micelles in a mouse model of dextran sulfate sodium-induced colitis. Micelles were formulated by the solvent evaporation method, and their physicochemical characterizations show their spherical shape under microscopic techniques like atomic force microscopy, transmission electron microscopy, and scanning electron microscopy. The in vitro release experiment shows sustained release behavior in physiological media. These micelles show cytocompatible behavior against hTERT-BJ cells up to 500 μg/mL dose, evidenced by more than 85% viable cells. BUD-loaded micelles successfully normalized the disease activity index and physical observation of colon length. The treatment with BUD-loaded micelles alleviates the colitis severity as analyzed in histopathology and efficiently, overcoming the disease severity via downregulation of various related cytokines (MPO, NO, and TNF-α) and inflammatory enzymes such as COX-2 and iNOS. Results of the study suggest that BUD-loaded nano-sized micelles effectively attenuate the disease conditions in colitis

    Highly Biocompatible Smart Injectable Hydrogel for the Management of Rheumatoid Arthritis

    No full text
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that severely affects joints and restricts locomotion. Various treatment regimens are available for RA, providing short-term relief from pain, but long-term relief from the disease is still not available. Evidently, cytokines play a crucial role in the pathophysiology of the disease. However, aberrant immune responses, genetic dispositions, viral infections, or toxicants are some possible causative mediators of RA. The synovial fluid of rheumatoid arthritis patients encompass cytokines, especially osteoclastogenic cytokines, and invasion factors such as macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). Moreover, tumor necrosis factor-α (TNF-α) and interleukins (IL-1, 6, and 17) intensify osteoclast differentiation and activation. Therefore, in order to restrict the cytokine expression, we used budesonide as a therapeutic lead and encapsulated it into a highly biocompatible hydrogel system. The hydrogel system developed by us is enzyme-responsive and provides sustained drug release flow over an extended period of time. This hydrogel is characterized by ζ-potential analysis, field-emission scanning electron microscopy (FE-SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and it is further encapsulated with budesonide (glucocorticoids) for therapeutic purposes. Evidently, Bud-loaded ER-hydrogel showed improvement in joint physiology compared to the disease group and downregulated the inflammatory markers
    corecore