2 research outputs found

    Hasil Belajar Kognitif IPA Fisika Siswa melalui Penerapan Strategi Bowling Campus di Kelas Viii6 SMPN 15 Pekanbaru

    Full text link
    This research aims at describe cognitive learning outcomes science of physics through the implementation strategy Bowling Campus on light subject at SMPN 15 Pekanbaru. The expected benefits of this research is for students implementation Bowling Campus strategy can improve the cognitive learning to become a better student. For teachers can be used as an alternative teaching strategies to improve the quality of science physics teaching. This research was conducted in SMP 15 Pekanbaru precisely in March 2015 until June 2015 in class VIII6 totaling 39 students. The design of the research is Pre-experimental design shapes One Shot Case study. From the research results obtained by the average value of absorption of students by 76.53% and categorized as good. Based on the average value of absorption was also found that the effectiveness of learning by applying Bowling Campus declared effective strategy. Based on 20 indicators of achievement of competencies in a given light material, 14 indicators declared complete with a percentage of 70%. It can be concluded that the application of Bowling Campus strategy can be used as an alternative in order to achieve the learning outcomes of cognitive learning better students in the classroom VIII6 SMP 15 Pekanbaru

    Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain

    No full text
    INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of loci associated with neurodevelopmental and psychiatric disorders, yet our lack of understanding of the target genes and biological mechanisms underlying these associations remains a major challenge. GWAS signals for many neuropsychiatric disorders, including autism spectrum disorder, schizophrenia, and bipolar disorder, are particularly enriched for gene-regulatory elements active during human brain development. However, the lack of a unified population-scale, ancestrally diverse gene-regulatory atlas of human brain development has been a major obstacle for the functional assessment of top loci and post-GWAS integrative analyses. RATIONALE To address this critical gap in knowledge, we have uniformly processed and systematically characterized gene, isoform, and splicing quantitative trait loci (cumulatively referred to as xQTLs) in the developing human brain across 672 unique samples from 4 to 39 postconception weeks spanning European, African-American, and Latino/admixed American ancestries). With this expanded atlas, we sought to specifically localize the timing and molecular features mediating the greatest proportion of neuropsychiatric GWAS heritability, to prioritize candidate risk genes and mechanisms for top loci, and to compare with analogous results using larger adult brain functional genomic reference panels. RESULTS In total, we identified 15,752 genes harboring a gene, isoform and/or splicing cis-xQTL, including 49 genes associated with four large, recurrent inversions. Highly concordant effect sizes were observed across populations, and our diverse reference panel improved resolution to fine-map underlying candidate causal regulatory variants. Substantially more genes were found to harbor QTLs in the first versus second trimester of brain development, with a notable drop in gene expression and splicing heritability observed from 10 to 18 weeks coinciding with a period of rapidly increasing cellular heterogeneity in the developing brain. Isoform-level regulation, particularly in the second trimester, mediated a greater proportion of heritability across multiple psychiatric GWASs compared with gene expression regulation. Through colocalization and transcriptome-wide association studies, we prioritized biological mechanisms for ~60% of GWAS loci across five neuropsychiatric disorders, with >2-fold more colocalizations observed compared with larger adult brain functional genomic reference panels. We observed convergence between common and rare-variant associations, including a cryptic splicing event in the high-confidence schizophrenia risk gene SP4. Finally, we constructed a comprehensive set of developmentally regulated gene and isoform coexpression networks harboring unique cell-type specificity and genetic enrichments. Leveraging this cell-type specificity, we identified >8000 module interaction QTLs, many of which exhibited additional GWAS colocalizations. Overall, neuropsychiatric GWASs and rare variant signals localized more strongly within maturing excitatory- and interneuron-associated modules compared with those enriched for neural progenitor cell types. Results can be visualized at devbrainhub.gandallab.org. CONCLUSION We have generated a large-scale, cross-population resource of gene, isoform, and splicing regulation in the developing human brain, providing comprehensive developmental and cell-type-informed mechanistic insights into the genetic underpinnings of complex neurodevelopmental and psychiatric disorders
    corecore