23 research outputs found

    Ultrashort echo time MRI of pulmonary water content: assessment in a sponge phantom at 1.5 and 3.0 Tesla

    Get PDF
    PURPOSEWe aimed to develop a predictive model for lung water content using ultrashort echo time (UTE) magnetic resonance imaging (MRI) and a sponge phantom. MATERIALS AND METHODSImage quality was preliminarily optimized, and the signal-to-noise ratio (SNR) of UTE was compared with that obtained from a three-dimensional fast gradient echo (FGRE) sequence. Four predetermined volumes of water (3.5, 3.0, 2.5, and 2.0 mL) were soaked in cellulose foam sponges 1.8 cm3 in size and were imaged with UTE-MRI at 1.5 and 3.0 Tesla (T). A multiple echo time experiment (range, 0.1–9.6 ms) was conducted, and the T2 signal decay curve was determined at each volume of water. A three-parameter equation was fitted to the measured signal, allowing for the calculation of proton density and T2*. The calculation error of proton density was determined as a function of echo time. The constants that allowed for the determination of unknown volumes of water from the measured proton density were calculated using linear regression. RESULTSUTE-MRI provided excellent image quality for the four phantoms and showed a higher SNR, compared to that of FGRE. Proton density decreased proportionally with the decreases in both lung water and field strength (from 3.5 to 2.0 mL; proton density range at 1.5 T, 30.5–17.3; at 3.0 T, 84.2–41.5). Minimum echo time less than 0.6 ms at 1.5 T and 1 ms at 3.0 T maintained calculation errors for proton density within the range of 0%–10%. The slopes of the lines for determining the unknown volumes of water with UTE-MRI were 0.12±0.003 at 1.5 T and 0.05±0.002 at 3.0 T (P < 0.0001). CONCLUSIONIn a sponge phantom imaged at 1.5 and 3.0 T, unknown volumes of water can be predicted with high accuracy using UTE-MRI

    Water-silicone separated volumetric MR acquisition for rapid assessment of breast implants

    Get PDF
    Purpose: To develop a robust T2-weighted volumetric imaging technique with uniform water-silicone separation and simultaneous fat suppression for rapid assessment of breast implants in a single acquisition. Materials and Methods: A three-dimensional (3D) fast spin echo sequence that uses variable refocusing flip angles was combined with a three-point chemical-shift technique (IDEAL) and short tau inversion recovery (STIR). Phase shifts of -π/6, +π/2, and +7π/6 between water and silicone were used for IDEAL processing. For comparison, two-dimensional images using 2D-FSE-IDEAL with STIR were also acquired in axial, coronal, and sagittal orientations. Results: Near-isotropic (true spatial resolution-0.9 ×1.3 × 2.0 mm 3) volumetric breast images with uniform water-silicone separation and simultaneous fat suppression were acquired successfully in clinically feasible scan times (7:00-10:00 min). The 2D images were acquired with the same in-plane resolution (0.9 × 1.3 mm 2), but the slice thickness was increased to 6 mm with a slice gap of 1 mm for complete coverage of the implants in a reasonable scan time, which varied between 18:00 and 22:30 min. Conclusion: The single volumetric acquisition with uniform water and silicone separation enables images to be reformatted into any orientation. This allows comprehensive assessment of breast implant integrity in less than 10 min of total examination time. © 2012 Wiley Periodicals, Inc

    T2-weighted 3D fast spin echo imaging with water-fat separation in a single acquisition

    Get PDF
    Purpose: To develop a robust 3D fast spin echo (FSE) T2-weighted imaging method with uniform water and fat separation in a single acquisition, amenable to high-quality multiplanar reformations. Materials and Methods: The Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) method was integrated with modulated refocusing flip angle 3D-FSE. Echoes required for IDEAL processing were acquired by shifting the readout gradient with respect to the Carr-Purcell-Meiboom-Gill echo. To reduce the scan time, an alternative data acquisition using two gradient echoes per repetition was implemented. Using the latter approach, a total of four gradient echoes were acquired in two repetitions and used in the modified IDEAL reconstruction. Results: 3D-FSE T2-weighted images with uniform water-fat separation were successfully acquired in various anatomies including breast, abdomen, knee, and ankle in clinically feasible scan times, ranging from 5:30-8:30 minutes. Using water-only and fat-only images, in-phase and out-of-phase images were reconstructed. Conclusion: 3D-FSE-IDEAL provides volumetric T2-weighted images with uniform water and fat separation in a single acquisition. High-resolution images with multiple contrasts can be reformatted to any orientation from a single acquisition. This could potentially replace 2D-FSE acquisitions with and without fat suppression and in multiple planes, thus improving overall imaging efficiency. © 2010 Wiley-Liss, Inc

    Consensus-based technical recommendations for clinical translation of renal ASL MRI

    Get PDF
    Objectives: To develop technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5T and 3T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-center clinical studies.Methods: An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting.Results: Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labeling with a single-slice spin-echo EPI readout with background suppression, and a simple but robust quantification model.Discussion: This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data becomes available, since the renal ASL literature is rapidly expanding

    Recommendations for quantitative cerebral perfusion MRI using multi‐timepoint arterial spin labeling: Acquisition, quantification, and clinical applications

    Get PDF
    Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article

    Intrasession Reliability of Arterial Spin-Labeled MRI–Measured Noncontrast Perfusion in Glioblastoma at 3 T

    No full text
    Arterial spin-labeled magnetic resonance imaging can provide quantitative perfusion measurements in the brain and can be potentially used to evaluate therapy response assessment in glioblastoma (GBM). The reliability and reproducibility of this method to measure noncontrast perfusion in GBM, however, are lacking. We evaluated the intrasession reliability of brain and tumor perfusion in both healthy volunteers and patients with GBM at 3 T using pseudocontinuous labeling (pCASL) and 3D turbo spin echo (TSE) using Cartesian acquisition with spiral profile reordering (CASPR). Two healthy volunteers at a single time point and 6 newly diagnosed patients with GBM at multiple time points (before, during, and after chemoradiation) underwent scanning (total, 14 sessions). Compared with 3D GraSE, 3D TSE-CASPR generated cerebral blood flow maps with better tumor-to-normal background tissue contrast and reduced image distortions. The intraclass correlation coefficient between the 2 runs of 3D pCASL with TSE-CASPR was consistently high (≥0.90) across all normal-appearing gray matter (NAGM) regions of interest (ROIs), and was particularly high in tumors (0.98 with 95% confidence interval [CI]: 0.97–0.99). The within-subject coefficients of variation were relatively low in all normal-appearing gray matter regions of interest (3.40%–7.12%), and in tumors (4.91%). Noncontrast perfusion measured using 3D pCASL with TSE-CASPR provided robust cerebral blood flow maps in both healthy volunteers and patients with GBM with high intrasession repeatability at 3 T. This approach can be an appropriate noncontrast and noninvasive quantitative perfusion imaging method for longitudinal assessment of therapy response and management of patients with GBM

    Texture analysis of magnetic resonance images of the human placenta throughout gestation: A feasibility study.

    No full text
    As fetal gestational age increases, other modalities such as ultrasound have demonstrated increased levels of heterogeneity in the normal placenta. In this study, we introduce and apply ROI-based texture analysis to a retrospective fetal MRI database to characterize the second-order statistics of placenta and to evaluate the relationship between heterogeneity and gestational age. Positive correlations were observed for several Haralick texture metrics derived from fetal-brain specific T2-weighted and gravid uterus T1-weighted and T2-weighted images, confirming a quantitative increase in placental heterogeneity with gestational age. Our study shows the importance of identifying baseline MR textural changes at certain gestational ages from which placental diseased states may be compared. Specifically, when evaluating for placental invasion or insufficiency, findings should be evaluated in the context of the normal placental aging process, which occurs throughout gestation
    corecore