12 research outputs found

    Role of SAM Chain Length in Enhancing the Sensitivity of Nanopillar Modified Electrodes for Glucose Detection

    Get PDF
    In this report, alkanethiol self assembled monolayers (SAM) with two different chain lengths were used to immobilize the functionalizing enzyme (glucose oxidase) onto gold nanopillar modified electrodes and the electrochemical processes of these functionalized electrodes in glucose detection were investigated. First, the formation of these SAMs on the nanopillar modified electrodes was characterized by the cyclic voltammetry and electrochemical impedance spectroscopy techniques, and then the detection sensitivity of these functionalized electrodes to glucose was evaluated by the amperometry technique. Results showed that the SAM of alkanethiols with a longer chain length resulted in a higher degree of surface coverage with less defect and a higher electron transfer resistance, whereas the SAM of alkanethiols with a shorter chain length gave rise to a higher detection sensitivity to glucose. This study sheds some new insight into how to enhance the sensing performance of nanopillar modified electrodes

    Investigations on the growth aspects and characterization of semiorganic nonlinear optical single crystals of L-histidine and its hydrochloride derivative

    No full text
    Semiorganic single crystals of L-histidine and L-histidine hydrochloride monohydrate have been obtained in a single solution prepared from the mixture of L-histidine and hydrochloric acid in 1:2 M ratio. Growth aspects of the single crystals have been discussed along with characterization studies. Crystal system and lattice parameters have been identified by X-ray diffraction analyses. It has been observed that the grown crystals possess orthorhombic system but with different set of lattice parameters. Presence of various functional groups has been identified and formation of two different crystals has been confirmed by Fourier transform infrared spectral analyses and FT-Raman studies. Linear and nonlinear optical properties have been studied by UV-Vis spectral analyses and Kurtz-Perry powder technique respectively. The thermal stability of the grown crystals was determined by thermal analyses. From the characterization studies it is found that both the crystals are useful for second harmonic generation applications. (C) 2013 Elsevier B.V. All rights reserved

    Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    No full text
    Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM&nbsp
    corecore