291 research outputs found

    Basal mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West Antarctica

    Get PDF
    The downstream portion of Whillans Ice Stream, West Antarctica, moves primarily by stick-slip motion. The observation of stick-slip motion suggests that the bed is governed by velocity-weakening physics and that the basal physics is more unstable than suggested by laboratory studies. The stick-slip cycle of Whillans Ice Plain exhibits substantial variability in both the duration of sticky periods and in slip magnitude. To understand this variability, we modeled the forces acting on the ice stream during the stick phase of the stick-slip cycle. The ocean tides introduce changes in the rate at which stress is applied to the ice plain. Increased loading rates promote earlier failure and vice versa. Results show that the bed of Whillans Ice Stream strengthens over time (healing) during the quiescent intervals in the stick-slip cycle, with the bed weakening during slip events. The time-dependent strengthening of the ice plain bed following termination of slip events indicates that the strength of the bed may vary by up to 0.35 kPa during the course of a single day

    Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica

    Get PDF
    The ability to monitor transient motion along faults is critical to improving our ability to understand many natural phenomena such as landslides and earthquakes. Here, we usedata from a GPS and seismometer network that were deployed to monitor the regularly repeating glacial earthquakes of Whillans Ice Stream, West Antarctica to show that a unique pattern of precursory slip precedes complete rupture along the bed of the ice stream. Additionally, we show that rupture can be independently tracked by increased levels of microseismic activity, including harmonic tremor, that are coincident with the onset of slip at any location, thus providing a remote means of monitoring stress and rupture propagation during the glacial earthquakes

    Implications of sea ice on Southern Ocean microseisms detected by a seismic array in West Antarctica

    Get PDF
    The proximity of Southern Ocean storms coupled with seasonal variation in sea ice make Antarctica ideal for the study of microseism sources. We explore frequency-dependent beamforming results using a short-duration, 60 km aperture, broad-band seismic array located on the Whillans Ice Stream, West Antarctica. Locations of single-frequency microseism (13–16 s period) generation are in regions where the continental shelf is ice-free, consistent with previous studies, and show Rayleigh wave sources remaining at consistent backazimuths throughout the duration of the array. Beamforming analysis of daily noise correlations shows that long-period double-frequency microseisms (9–11 s) consist predominantly of Rayleigh waves excited by storms in the Southern Ocean. Modelling of source locations based on wave–wave interaction provides a good fit to our data at these periods. We show that short-period double-frequency microseisms (5–7 s) in Antarctica consist of crustal phase Lg and body waves. Lg arrivals propagate through regions of continental crust and our data show that the Lg energy is generated when storm systems interact with the sea-ice-free continental shelf during austral summers. Ultra-short-period (0.3–2 s) microseismic body waves back project to regions that correlate with oceanic storm systems in both the Southern and Northern Hemispheres

    Tidal pacing, skipped slips and the slowdown of Whillans Ice Stream, Antarctica

    Get PDF
    We summarize new observations of the deceleration and stick–slip motion of Whillans Ice Stream (WIS), Antarctica. We refine the location of the large sticky spots that resist motion between slip events, the locations of which are controlled by the patterns of subglacial water flow. Our examination of the long-term velocity time series for the ice stream reveals that the decadal-scale deceleration is not occurring at a steady rate, but varies at the sub-decadal timescale. This unsteady deceleration modulates the temporal evolution of a broad (~50 km across) surface-elevation bulge forming at the junction between the relatively narrow upstream portion of the ice stream and broad ice plain that constitutes the downstream end of WIS. Comparison of observations from April 2003 and November 2010 reveals significant changes in the tidally modulated stick–slip cycle that regulates motion on the ice plain. We observe that the timing of slip events has become less regular in response to decreased flow speed in the upstream portions of the ice stream. The decreased regularity of slip events has reduced the release of stored elastic strain during slip events, increasing the rate of deceleration

    Glacial Earthquakes and Precursory Seismicity Associated With Thwaites Glacier Calving

    Get PDF
    We observe two (~MS 3) long‐period (10–30 s) seismic events that originate from the terminus of Thwaites Glacier, Antarctica. Serendipitous acquisition of satellite images confirm that the seismic events were glacial earthquakes generated during the capsizing of icebergs. The glacial earthquakes were preceded by 6 days of discrete high‐frequency seismic events that can be observed at distances exceeding 250 km. The high‐frequency seismicity displays an increasing rate of occurrence, culminating in several hours of sustained tremor coeval with the long‐period events. A series of satellite images collected during this precursory time period show that the high‐frequency events and tremor are the result of accelerating growth of ancillary fractures prior to the culminating calving event. This study indicates that seismic data have the potential to elucidate the processes by which Thwaites Glacier discharges into the ocean, thus improving our ability to constrain future sea level rise

    Distribution of preferred ice crystal orientation determined from seismic anisotropy: Evidence from Jakobshavn Isbræ and the North Greenland Eemian Ice Drilling facility, Greenland

    Get PDF
    Preferred crystal orientation fabrics (COFs) within an ice sheet or glacier are typically found from ice cores. We conducted experiments at the North Greenland Eemian Ice Drilling (NEEM) facility ice core location, where COF data were available at Jakobshavn Isbræ west Greenland, to test if COF can be determined seismically. We used observations of anisotropic seismic wave propagation on multioffset gathers and englacial imaging from a 2D reflection profile. Anisotropy analysis of the NEEM data yielded mean c-axes distributed over a conical region of 30° to 32° from vertical. No internal ice seismic reflectors were imaged. Direct COF measurements collected in the ice core agreed with the seismic observations. At Jakobshavn Isbræ, we used a multioffset gather and a 2D reflection profile, but we lacked ice core data. Englacial reflectors allowed the determination of ice column interval properties. Anisotropy analysis found that the upper 1640 m of the ice column consisted of cold (≈−10°C≈−10°C) and mostly isotropic ice with c-axes distributed over a conical region of 80° from vertical. The lower 300 m of the ice column was characterized by warm (>−10°C>−10°C) ice with COF. These observations were consistent with complex ice fabric development and temperature estimations over the same region of Jakobshavn Isbræ. This study demonstrated that the ice sheet and glacier ice anisotropy information can be gained from seismic field observations

    Changes in Continental and Sea-salt Atmospheric Loadings in Central Greenland during the Most Recent Deglaciation: Model-based Estimates

    Get PDF
    By fitting a very simple atmospheric impurity model to high-resolution data on ice accumulation and contaminant f1uxes in the GISP2 ice core, we have estimated changes in the atmospheric concentrations of soluble major ions, insoluble particulates and 10Be during the transition from glacial to Holocene conditions. For many species, changes in concentration in the ice typically overestimate atmospheric changes, and changes in flux to the ice typically underestimate atmospheric changes, because times of increased atmospheric contaminant loading are also times of reduced snowfall. The model interpolates between the flux and concentration records by explicitly allowing [or wet- and dry- deposition processes. Compared to the warm Preboreal that followed, we estimate that the atmosphere over Greenland sampled b y snow accumulated during the Younger Dryas cold event contained on average four-seven times the insoluble particulates and n early seven times the soluble calcium derived from continental sources, and about three times the sea salt but only slightly more cosmogenic 10Be

    Scientific Value of Real-Time Global Positioning System Data

    Get PDF
    The Global Positioning System (GPS) is an example of a Global Navigation Satellite System (GNSS) that provides an essential complement to other geophysical networks because of its high precision, sensitivity to the longest‐period bands, ease of deployment, and ability to measure displacement and atmospheric properties over local to global scales. Recent and ongoing technical advances, combined with decreasing equipment and data acquisition costs, portend rapid increases in accessibility of data from expanding global geodetic networks. Scientists and the public are beginning to have access to these high‐rate, continuous data streams and event‐specific information within seconds to minutes rather than days to months. These data provide the opportunity to observe Earth system processes with greater accuracy and detail, as they occur

    Shear velocity structure of central Antarctica from teleseismic Rayleigh waves

    Get PDF
    第2回極域科学シンポジウム/第31回極域地学シンポジウム 11月16日(水) 国立国語研究
    corecore