22 research outputs found

    The dose response of taurine on aerobic and strength exercises:a systematic review

    Get PDF
    Taurine is a naturally occurring amino acid involved in various functions, including regulating ion channels, cell volume, and membrane stabilization. However, how this molecule orchestrates such functions is unknown, particularly the dose response in exercised muscles. Therefore, this review aimed to systematically review the dose response of taurine on both aerobic and strength exercise performance. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, relevant articles were sought on PubMed, Medline, Web of Science, and Google Scholar using related terms, including taurine, exercise performance, exercise, muscle, physical training, running, strength, endurance exercise, resistance exercise, aerobic exercise, and swimming. Ten articles were retrieved, reviewed, and subjected to systematic analysis. The following parameters were used to assess exercise performance in the selected studies: creatine kinase (CK), lactic acid dehydrogenase, carbohydrate, fat, glycerol, malondialdehyde, enzymatic antioxidants, blood pH, taurine level, and muscular strength. From the selected literature, we observed that taurine supplementation (2 g three times daily) with exercise can decrease DNA damage. Furthermore, 1 g of acute taurine administration before or after exercise can decrease lactate levels. However, acute administration of taurine (6 g) at a high dose before the start of exercise had no effect on reducing lactate level, but increased glycerol levels, suggesting that taurine could be an effective agent for prolonged activities, particularly at higher intensities. However, further studies are warranted to establish the role of taurine in fat metabolism during exercise. Finally, we observed that a low dose of taurine (0.05 g) before performing strength enhancing exercises can decrease muscular fatigue and increase enzymatic antioxidants. Systematic Review Registration:http://www.crd.york.ac.uk/PROSPERO, PROSPERO (CRD42021225243)

    Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition

    Get PDF
    Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions

    How to Improve the Standing Long Jump Performance? A Mininarrative Review

    No full text
    Standing long jump (SLJ) is complicated by the challenge of motor coordination in both the upper and lower segments. This movement is also considered to be a fundamental skill in a variety of sports. In particular, SLJ is an important test index for middle school students for assessing their physical fitness levels. This assessment takes the form of a physical fitness test high school entrance examination in some countries such as China. This minireview summarizes recent studies that have investigated how to improve the standing long jump performance from different aspects which include arm motion, takeoff angle, standing posture, warming-up exercise, and handheld weight. The common study limitations, controversial knowledge, and future research direction are also discussed in detail

    Redox Status Is the Mainstay of SARS-CoV-2 and Host for Producing Therapeutic Opportunities

    No full text
    Over hundreds of years, humans have faced multiple pandemics and have overcome many of them with scientific advancements. However, the recent coronavirus disease (COVID-19) has challenged the physical, mental, and socioeconomic aspects of human life, which has introduced a general sense of uncertainty among everyone. Although several risk profiles, such as the severity of the disease, infection rate, and treatment strategy, have been investigated, new variants from different parts of the world put humans at risk and require multiple strategies simultaneously to control the spread. Understanding the entire system with respect to the commonly involved or essential mechanisms may be an effective strategy for successful treatment, particularly for COVID-19. Any treatment for COVID-19 may alter the redox profile, which can be an effective complementary method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and further replication. Indeed, redox profiles are one of the main barriers that suddenly shift the immune response in favor of COVID-19. Fortunately, several redox components exhibit antiviral and anti-inflammatory activities. However, access to these components as support elements against COVID-19 is limited. Therefore, understanding redox-derived species and their nodes as a common interactome in the system will facilitate the treatment of COVID-19. This review discusses the redox-based perspectives of the entire system during COVID-19 infection, including how redox-based molecules impact the accessibility of SARS-CoV-2 to the host and further replication. Additionally, to demonstrate its feasibility as a viable approach, we discuss the current challenges in redox-based treatment options for COVID-19

    Inhibition of HDACs Suppresses Cell Proliferation and Cell Migration of Gastric Cancer by Regulating E2F5 Targeting BCL2

    No full text
    (1) Background: Gastric cancer (GC) is the most common high death-rate cancer type worldwide, with an enhanced prevalence and increased rate of mortality. Although significant evidence on surgery strategy has been generated for the treatment of GC, conclusions are still uncertain regarding profound metastatic or persevering gastric cancer. Therefore, it is essential to develop novel and effective biomarkers or therapeutic targets for the diagnosis of GC. Histone deacetylations (HDACs) are important epigenetic regulators that control the aberrant transcription of critical genes that are mainly involved in cell proliferation, cell migration, regulation of the cell cycle, and different signal pathways. (2) Methods: Expression analysis of HDACs family members and E2F5 in gastric cancer cell lines was determined by RT-PCR and Western blotting. The cell proliferation was determined through an MTT assay. Cell migration was determined using a wound-healing assay. Flow cytometry experiments were used to determine cell-cycle analysis. The statistical software OriginPro 2015 (OriginLab, Northampton, MA, USA) was used to analyze data. A p value of < 0.05 was regarded as significant. (3) Results: The present study shows that E2F5 expression is upregulated in GC cancer cell lines compared to normal cell lines, and is positively associated with the level of HDACs and BCL2. HDACi and knocking down of E2F5 as tumor suppressors inhibited cell proliferation, migration invasion, and blocked the cell cycle in gastric cancer cells by suppressing BCL2. The results conclude that the anticancer mechanism of HDACi was determined by regulating E2F5 via targeting BCL2. (4) Conclusions: Our results suggest that the HDAC–E2F5–BCL2 signaling axis might be a novel potential biomarker in gastric cancer

    Current evidence on traditional Chinese exercise for cancers : a systematic review of randomized controlled trials

    No full text
    Traditional Chinese exercise (TCE) has gradually become one of the widespread complementary therapies for treatment and recovery of cancers. However, evidence based on the systematic evaluation of its efficacy is lacking, and there appears to be no conclusion regarding the setting of TCE interventions. The purpose of this systematic review is to summarize the current randomized controlled trials (RCTs) that outline the effects of TCE on cancer patients. Relevant studies were searched by GOOGLE SCHOLAR, SCIENCEDIRECT, and WEB OF SCIENCE using “traditional Chinese exercise” and “cancer.” Only RCTs published in peer-reviewed English journals were included. A total of 27 studies covering 1616 cancer patients satisfied the eligibility criteria for this review. Despite the methodological limitation and relatively high risk of bias possessed by some included studies, positive evidence was still detected on the effects of TCE on these cancer-related health outcomes in physical, psychological, and physiological parameters. The 60-min or 90-min course of TCE intervention for two to three times per week for 10 to 12 weeks was found to be the most common setting in these studies and has effectively benefited cancer patients. These findings add scientific support to encourage cancer patients to practice TCE during or after conventional medical treatment. Nevertheless, future well-designed RCTs with improved methodology and larger sample size on this field are much warranted for further verification.Published versio

    The Use of Metallic Nanoparticles in Wound Healing: New Perspectives

    No full text
    Chronic wounds represent a challenge for the health area, as they directly impact patients’ quality of life and represent a threat to public health and the global economy due to their high cost of treatment. Alternative strategies must be developed for cost-effective and targeted treatment. In this scenario, the emerging field of nanobiotechnology may provide an alternative platform to develop new therapeutic agents for the chronic wound healing process. This manuscript aims to demonstrate that the application of metallic nanoparticles (gold, silver, copper, and zinc oxide) opened a new chapter in the treatment of wounds, as they have different properties such as drug delivery, antimicrobial activity, and healing acceleration. Furthermore, metallic nanoparticles (NPs) produced through green synthesis ensure less toxicity in biological tissues, and greater safety of applicability, other than adding the effects of NPs with those of extracts

    Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review

    No full text
    Exercise-induced benefits are being increasingly recognized in promoting health and preventing diseases. However, initial adaption to exercise response can have different effects on cells, including an increase in the formation of oxidants and inflammatory mediators that ultimately leads to oxidative stress, but this scenario depends on the exercise type and intensity and training status of the individual. Therefore, we aimed to understand the effect of different types of exercise on oxidative stress. Indeed, exercise-induced minimum oxidative stress is required for regulating signaling pathways. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, a search for relevant articles was carried out on PubMed/Medline, ISI Web of Science, and Google Scholar using a broad range of synonyms such as oxidants, reactive oxygen species (ROS), oxidative stress, exercise, physical training, aerobic exercise, and strength exercise until 2019. This study selected a total of 18 articles for assessing the oxidative damage using various parameters such as malondialdehyde (MDA), protein carbonyl (PCO), and F1-isoprostanes and enzymatic antioxidants. We observed that any type of exercise can increase the oxidative damage in an exercise type and intensity manner. Further, the training status of the individual and specific oxidative damage marker plays a crucial role in predicting earlier oxidative damage in the exercise condition. However, some of the studies that we included for review did not perform follow-up evaluations. Therefore, follow-up programs using larger numbers need to be performed to confirm our findings
    corecore