37 research outputs found

    Identification of Distinct Characteristics of Antibiofilm Peptides and Prospection of Diverse Sources for Efficacious Sequences

    Get PDF
    A majority of microbial infections are associated with biofilms. Targeting biofilms is considered an effective strategy to limit microbial virulence while minimizing the development of antibiotic resistance. Toward this need, antibiofilm peptides are an attractive arsenal since they are bestowed with properties orthogonal to small molecule drugs. In this work, we developed machine learning models to identify the distinguishing characteristics of known antibiofilm peptides, and to mine peptide databases from diverse habitats to classify new peptides with potential antibiofilm activities. Additionally, we used the reported minimum inhibitory/eradication concentration (MBIC/MBEC) of the antibiofilm peptides to create a regression model on top of the classification model to predict the effectiveness of new antibiofilm peptides. We used a positive dataset containing 242 antibiofilm peptides, and a negative dataset which, unlike previous datasets, contains peptides that are likely to promote biofilm formation. Our model achieved a classification accuracy greater than 98% and harmonic mean of precision-recall (F1) and Matthews correlation coefficient (MCC) scores greater than 0.90; the regression model achieved an MCC score greater than 0.81. We utilized our classification-regression pipeline to evaluate 135,015 peptides from diverse sources for potential antibiofilm activity, and we identified 185 candidates that are likely to be effective against preformed biofilms at micromolar concentrations. Structural analysis of the top 37 hits revealed a larger distribution of helices and coils than sheets, and common functional motifs. Sequence alignment of these hits with known antibiofilm peptides revealed that, while some of the hits showed relatively high sequence similarity with known peptides, some others did not indicate the presence of antibiofilm activity in novel sources or sequences. Further, some of the hits had previously recognized therapeutic properties or host defense traits suggestive of drug repurposing applications. Taken together, this work demonstrates a new in silico approach to predicting antibiofilm efficacy, and identifies promising new candidates for biofilm eradication

    Fibrin prestress due to platelet aggregation and contraction increases clot stiffness

    Get PDF
    Efficient hemorrhagic control is attained through the formation of strong and stable blood clots at the site of injury. Although it is known that platelet-driven contraction can dramatically influence clot stiffness, the underlying mechanisms by which platelets assist fibrin in resisting external loads are not understood. In this study, we delineate the contribution of platelet-fibrin interactions to clot tensile mechanics using a combination of new mechanical measurements, image analysis, and structural mechanics simulation. Based on uniaxial tensile test data using custom-made microtensometer and fluorescence microscopy of platelet aggregation and platelet-fibrin interactions, we show that integrin-mediated platelet aggregation and actomyosin-driven platelet contraction synergistically increase the elastic modulus of the clots. We demonstrate that the mechanical and geometric response of an active contraction model of platelet aggregates compacting vicinal fibrin is consistent with the experimental data. The model suggests that platelet contraction induces prestress in fibrin fibers and increases the effective stiffness in both cross-linked and noncross-linked clots. Our results provide evidence for fibrin compaction at discrete nodes as a major determinant of mechanical response to applied loads

    The interaction of vortical flows with red cells in venous valve mimics

    Get PDF
    The motion of cells orthogonal to the direction of main flow is of importance in natural and engineered systems. The lateral movement of red blood cells (RBCs) distal to sudden expansion is considered to influence the formation and progression of thrombosis in venous valves, aortic aneurysms, and blood-circulating devices and is also a determining parameter for cell separation applications in flow-focusing microfluidic devices. Although it is known that the unique geometry of venous valves alters the blood flow patterns and cell distribution in venous valve sinuses, the interactions between fluid flow and RBCs have not been elucidated. Here, using a dilute cell suspension in an in vitro microfluidic model of a venous valve, we quantified the spatial distribution of RBCs by microscopy and image analysis, and using micro-particle image velocimetry and 3D computational fluid dynamics simulations, we analyzed the complex flow patterns. The results show that the local hematocrit in the valve pockets is spatially heterogeneous and is significantly different from the feed hematocrit. Above a threshold shear rate, the inertial separation of streamlines and lift forces contribute to an uneven distribution of RBCs in the vortices, the entrapment of RBCs in the vortices, and non-monotonic wall shear stresses in the valve pockets. Our experimental and computational characterization provides insights into the complex interactions between fluid flow, RBC distribution, and wall shear rates in venous valve mimics, which is of relevance to understanding the pathophysiology of thrombosis and improving cell separation efficiency

    A Facile High-Throughput Model of Surface-Independent Staphylococcus aureus Biofilms by Spontaneous Aggregation

    Get PDF
    Many microbes in their natural habitats are found in biofilm ecosystems attached to surfaces and not as free-floating (planktonic) organisms. Furthermore, it is estimated that nearly 80% of human infections are associated with biofilms. Biofilms are traditionally defined as three-dimensional, structured microbial communities that are attached to a surface and encased in a matrix of exopolymeric material. While this view of biofilm largely arises from in vitro studies under static or flow conditions, in vivo observations have indicated that this view of biofilms is essentially true only for foreign-body infections on catheters or implants where biofilms are attached to the biomaterial. In mucosal infections such as chronic wounds or cystic fibrosis or joint infections, biofilms can be found unattached to a surface and as three-dimensional aggregates. In this work, we describe a high-throughput model of aggregate biofilms of methicillin-resistant Staphylococcus aureus (MRSA) using 96-well plate hanging-drop technology. We show that MRSA forms surface-independent biofilms, distinct from surface-attached biofilms, that are rich in exopolymeric proteins, polysaccharides, and extracellular DNA (eDNA), express biofilm-related genes, and exhibit heightened antibiotic resistance. We also show that the surface-independent biofilms of clinical isolates of MRSA from cystic fibrosis and central catheter-related infections demonstrate morphological differences. Overall, our results show that biofilms can form by spontaneous aggregation without attachment to a surface, and this new in vitro system can model surface-independent biofilms that may more closely mimic the corresponding physiological niche during infection. IMPORTANCE The canonical model of biofilm formation begins with the attachment and growth of microbial cells on a surface. While these in vitro models reasonably mimic biofilms formed on foreign bodies such as catheters and implants, this is not the case for biofilms formed in cystic fibrosis and chronic wound infections, which appear to present as aggregates not attached to a surface. The hanging-drop model of biofilms of methicillin-resistant Staphylococcus aureus (MRSA), the major causative organism of skin and soft tissue infections, shows that these biofilms display morphological and antibiotic response patterns that are distinct from those of their surface-attached counterparts, and biofilm growth is consistent with their in vivo location. The simplicity and throughput of this model enable adoption to investigate other single or polymicrobial biofilms in a physiologically relevant setting

    Automated Motion Tracking and Data Extraction for Red Blood Cell Biomechanics

    Get PDF
    Red blood cell biomechanics can provide us with a deeper understanding of macroscopic physiology and have the potential of being used for diagnostic purposes. In diseases like sickle cell anemia and malaria, reduced red blood cell deformability can be used as a biomarker, leading to further assays and diagnoses. A microfluidic system is useful for studying these biomechanical properties. We can observe detailed red blood cell mechanical behavior as they flow through microcapillaries using high-speed imaging and microscopy. Microfluidic devices are advantageous over traditional methods because they can serve as high-throughput tests. However, to rapidly analyze thousands of cells, there is a need for powerful image processing tools and software automation. We describe a workflow process using Image-Pro to identify and track red blood cells in a video, take measurements, and export the data for use in statistical analysis tools. The information in this protocol can be applied to large-scale blood studies where entire cell populations need to be analyzed from many cohorts of donors. © 2020 The Authors. Basic Protocol 1: Enhancing raw video for motion tracking. Basic Protocol 2: Extracting motion tracking data from enhanced video

    Antimicrobial and Antibiofilm Activity of Synergistic Combinations of a Commercially Available Small Compound Library With Colistin Against Pseudomonas aeruginosa

    Get PDF
    Biofilm-associated Pseudomonas aeruginosa infections remain a significant clinical challenge since the conventional antibiotic treatment or combination therapies are largely ineffective; and new approaches are needed. To circumvent the major challenges associated with discovery of new antimicrobials, we have screened a library of compounds that are commercially available and approved by the FDA (Prestwick Chemical Library) against P. aeruginosa for effective antimicrobial and anti-biofilm activity. A preliminary screen of the Prestwick Chemical Library alone did not yield any repositionable candidates, but in a screen of combinations with a fixed sub-inhibitory concentration of the antibiotic colistin we observed 10 drugs whose bacterial inhibiting activity was reproducibly enhanced, seven of which were enhanced by more than 50%. We performed checkerboard assays of these seven drugs in combination with colistin against planktonic cells, and analysis of their interactions over the complete combination matrix using the Zero Interaction Potency (ZIP) model revealed interactions that varied from highly synergistic to completely antagonistic. Of these, five combinations that showed synergism were down-selected and tested against preformed biofilms of P. aeruginosa. Two of the five combinations were active against preformed biofilms of both laboratory and clinical strain of P. aeruginosa, resulting in a 2-log reduction in culturable cells. In summary, we have identified synergistic combinations of five commercially available, FDA-approved drugs and colistin that show antimicrobial activity against planktonic P. aeruginosa (Clomiphene Citrate, Mitoxantrone Dihydrochloride, Methyl Benzethonium Chloride, Benzethonium Chloride, and Auranofin) as well as two combinations (Auranofin and Clomiphene Citrate) with colistin that show antibiofilm activity

    Development of a High-Throughput Candida albicans Biofilm Chip

    Get PDF
    We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed “nano-biofilms”. The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B). Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip) is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously

    Hydrodynamic Regulation of Monocyte Inflammatory Response to an Intracellular Pathogen

    Get PDF
    Systemic bacterial infections elicit inflammatory response that promotes acute or chronic complications such as sepsis, arthritis or atherosclerosis. Of interest, cells in circulation experience hydrodynamic shear forces, which have been shown to be a potent regulator of cellular function in the vasculature and play an important role in maintaining tissue homeostasis. In this study, we have examined the effect of shear forces due to blood flow in modulating the inflammatory response of cells to infection. Using an in vitro model, we analyzed the effects of physiological levels of shear stress on the inflammatory response of monocytes infected with chlamydia, an intracellular pathogen which causes bronchitis and is implicated in the development of atherosclerosis. We found that chlamydial infection alters the morphology of monocytes and trigger the release of pro-inflammatory cytokines TNF-α, IL-8, IL-1β and IL-6. We also found that the exposure of chlamydia-infected monocytes to short durations of arterial shear stress significantly enhances the secretion of cytokines in a time-dependent manner and the expression of surface adhesion molecule ICAM-1. As a functional consequence, infection and shear stress increased monocyte adhesion to endothelial cells under flow and in the activation and aggregation of platelets. Overall, our study demonstrates that shear stress enhances the inflammatory response of monocytes to infection, suggesting that mechanical forces may contribute to disease pathophysiology. These results provide a novel perspective on our understanding of systemic infection and inflammation

    Chronic Nicotine Exposure Induces Murine Aortic Remodeling and Stiffness Segmentation - Implications for Abdominal Aortic Aneurysm Susceptibility

    Get PDF
    Aim: Arterial stiffness is a significant risk factor for many cardiovascular diseases, including abdominal aortic aneurysms (AAA). Nicotine, the major active ingredient of e-cigarettes and tobacco smoke, induces acute vasomotor effects that may temporarily increase arterial stiffness. Here, we investigated the effects of long-term nicotine exposure on structural aortic stiffness. Methods: Mice (C57BL/6) were infused with nicotine for 40 days (20 mg/kg/day). Arterial stiffness of the thoracic (TS) and abdominal (AS) aortic segments was analyzed using ultrasound (PVVV, pulse wave velocity) and ex vivo pressure myograph measurements. For mechanistic studies, aortic matrix-metalloproteinase (MMP) expression and activity as well as medial elastin architecture were analyzed. Results: Global aortic stiffness increased with nicotine. In particular, local stiffening of the abdominal segment occurred after 10 days, while thoracic aortic stiffness was only increased after 40 days, resulting in aortic stiffness segmentation. Mechanistically, nicotine exposure enhanced expression of MMP-2/-9 and elastolytic activity in both aortic segments. Elastin degradation occurred in both segments;however, basal elastin levels were higher in the thoracic aorta. Finally, MMP-inhibition significantly reduced nicotine-induced MMP activity, elastin destruction, and aortic stiffening. Conclusion: Chronic nicotine exposure induces aortic MMP expression and structural aortic damage (elastin fragmentation), irreversibly increasing aortic stiffness. This process predominantly affects the abdominal aortic segment, presumably due in part to a lower basal elastin content. This novel phenomenon may help to explain the role of nicotine as a major risk factor for AM formation and has health implications for ECIGs and other modes of nicotine delivery
    corecore