155 research outputs found

    Auditing: Active Learning with Outcome-Dependent Query Costs

    Full text link
    We propose a learning setting in which unlabeled data is free, and the cost of a label depends on its value, which is not known in advance. We study binary classification in an extreme case, where the algorithm only pays for negative labels. Our motivation are applications such as fraud detection, in which investigating an honest transaction should be avoided if possible. We term the setting auditing, and consider the auditing complexity of an algorithm: the number of negative labels the algorithm requires in order to learn a hypothesis with low relative error. We design auditing algorithms for simple hypothesis classes (thresholds and rectangles), and show that with these algorithms, the auditing complexity can be significantly lower than the active label complexity. We also discuss a general competitive approach for auditing and possible modifications to the framework.Comment: Corrections in section

    Learning from Data with Heterogeneous Noise using SGD

    Full text link
    We consider learning from data of variable quality that may be obtained from different heterogeneous sources. Addressing learning from heterogeneous data in its full generality is a challenging problem. In this paper, we adopt instead a model in which data is observed through heterogeneous noise, where the noise level reflects the quality of the data source. We study how to use stochastic gradient algorithms to learn in this model. Our study is motivated by two concrete examples where this problem arises naturally: learning with local differential privacy based on data from multiple sources with different privacy requirements, and learning from data with labels of variable quality. The main contribution of this paper is to identify how heterogeneous noise impacts performance. We show that given two datasets with heterogeneous noise, the order in which to use them in standard SGD depends on the learning rate. We propose a method for changing the learning rate as a function of the heterogeneity, and prove new regret bounds for our method in two cases of interest. Experiments on real data show that our method performs better than using a single learning rate and using only the less noisy of the two datasets when the noise level is low to moderate

    Differentially Private Empirical Risk Minimization

    Full text link
    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ϵ\epsilon-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.Comment: 40 pages, 7 figures, accepted to the Journal of Machine Learning Researc
    corecore