131 research outputs found
Genetic variants in ARID5B and CEBPE are childhood ALL susceptibility loci in Hispanics.
Recent genome-wide studies conducted in European Whites have identified novel susceptibility genes for childhood acute lymphoblastic leukemia (ALL). We sought to examine whether these loci are susceptibility genes among Hispanics, whose reported incidence of childhood ALL is the highest of all ethnic groups in California, and whether their effects differ between Hispanics and non-Hispanic Whites (NHWs). We genotyped 13 variants in these genes among 706 Hispanic (300 cases, 406 controls) and 594 NHW (225 cases, 369 controls) participants in a matched population-based case-control study in California. We found significant associations for the five studied ARID5B variants in both Hispanics (p values of 1.0 × 10(-9) to 0.004) and NHWs (p values of 2.2 × 10(-6) to 0.018). Risk estimates were in the same direction in both groups (ORs of 1.53-1.99 and 1.37-1.84, respectively) and strengthened when restricted to B-cell precursor high-hyperdiploid ALL (>50 chromosomes; ORs of 2.21-3.22 and 1.67-2.71, respectively). Similar results were observed for the single CEBPE variant. Hispanics and NHWs exhibited different susceptibility loci at CDKN2A. Although IKZF1 loci showed significant susceptibility effects among NHWs (p < 1 × 10(-5)), their effects among Hispanics were in the same direction but nonsignificant, despite similar minor allele frequencies. Future studies should examine whether the observed effects vary by environmental, immunological, or lifestyle factors
The isopropylation of naphthalene with propene over H-mordenite: The catalysis at the internal and external acid sites
The isopropylation of naphthalene (NP) with propene over H-Mordenite (MOR) was studied under a wide range of reaction parameters: temperature, propene pressure, period, and NP/MOR ratio. Selective formation of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed at reaction conditions, such as at low reaction temperature, under high propene pressure, and/or with high NP/MOR ratio. However, the decrease in the selectivities for 2,6-DIPN was observed at reaction conditions such as at high temperature, under low propene pressure, and/or with low NP/MOR ratio. The selectivities for 2,6-DIPN in the encapsulated products were remained high and constant under all reaction conditions. These results indicate that the selective formation of 2,6-DIPN occurs through the least bulky transition state due to the exclusion of the bulky isomers by the MOR channels. The decrease in the selectivities for 2,6-DIPN are due to the isomerization of 2,6-DIPN to 2,7-DIPN at the external acid sites, directing towards thermodynamic equilibrium of DIPN isomers
Continuous Flow Synthesis of ZSM-5 Zeolite on the Order of Seconds
Zeolites have typically been synthesized via hydrothermal treatment, a process designed to artificially mimic the geological formation conditions of natural zeolites. This synthesis route, typically carried out in batch reactors like autoclaves, takes a time so long (typically, on the order of days) that the crystallization of zeolites had long been believed to be very slow in nature. Long periods of hydrothermal treatment also cause a burden on both energy efficiency and operational costs. Recently, we have reported the ultrafast syntheses of a class of industrially important zeolites within several minutes.[1,2] Further shortening the crystallization time to the order of seconds would be a great challenge but can significantly benefit the mass product of zeolites as well as the fundamental understanding of the crystallization mechanism
Photocatalytic hydrogen generation from water using a hybrid of graphene nanoplatelets and self doped TiO2-Pd
Nanohybrids of self doped (Ti doped or reduced TiO -TiOR) TiO-graphene nanoplatelets (TiO R-G) of different compositions are synthesized by a facile soft chemical method. A decrease of bandgap and improved visible light absorption is exhibited by TiOR-G. Based on current-voltage (I-V) measurements, it is concluded that the hybrid material possesses improved electron transport properties compared to TiOR and pure TiO. A detailed characterization of the composites indicated that TiOR exists as a dispersed phase on graphene nanoplatelets (graphene). Among different compositions of the composites, the catalyst containing 3 weight% of graphene (TiOR-3G) shows enhanced photocatalytic activity for hydrogen generation from water compared to both TiO and TiOR. When Pd is used as co-catalyst in this composite, a large increase in the activity is observed. The increased efficiency of the nanocomposite is attributed to factors like: (i) improved visible light absorption promoted by G and Ti dopant (ii) increased lifetime of the charge carriers assisted by the enhanced electron transporting properties of G (iii) increased number of active sites for hydrogen evolution provided by the Pd co-catalyst. This work highlights the role of TiO based hybrid materials as efficient photocatalysts for solar energy utilization. This journal i
Haplotypes of DNA repair and cell cycle control genes, X-ray exposure, and risk of childhood acute lymphoblastic leukemia
[[abstract]]Background: Acute leukemias of childhood are a heterogeneous group of malignancies characterized by cytogenetic abnormalities, such as translocations and changes in ploidy. These abnormalities may be influenced by altered DNA repair and cell cycle control processes. Methods: We examined the association between childhood acute lymphoblastic leukemia (ALL) and 32 genes in DNA repair and cell cycle pathways using a haplotype-based approach, among 377 childhood ALL cases and 448 controls enrolled during 1995-2002. Results: We found that haplotypes in APEX1, BRCA2, ERCC2, and RAD51 were significantly associated with total ALL, while haplotypes in NBN and XRCC4, and CDKN2A were associated with structural and numerical change subtypes, respectively. In addition, we observed statistically significant interaction between exposure to 3 or more diagnostic X-rays and haplotypes of XRCC4 on risk of structural abnormality-positive childhood ALL. Conclusions: These results support a role of altered DNA repair and cell cycle processes in the risk of childhood ALL, and show that this genetic susceptibility can differ by cytogenetic subtype and may be modified by exposure to ionizing radiation. To our knowledge, our study is the first to broadly examine the DNA repair and cell cycle pathways using a haplotype approach in conjunction with X-ray exposures in childhood ALL risk. If confirmed, future studies are needed to identify specific functional SNPs in the regions of interest identified in this analysis
- …