12,688 research outputs found

    Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 Single Crystals

    Get PDF
    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility \chi versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T) and electrical resistivity \rho(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu1.82Sb2. The \rho(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the \chi(T), Cp(T), and \rho(T) data for both EuCu2As2 (T_N = 17.5 K) and EuCu1.82Sb2 (T_N = 5.1 K). In EuCu1.82Sb2, the ordered-state \chi(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S=7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. The anisotropic \chi(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S=7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.Comment: 21 pages, 22 figures, 4 Table

    Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn2As2

    Get PDF
    We report magnetic susceptibility \chi, isothermal magnetization M, heat capacity C_p and electrical resistivity \rho measurements on undoped EuMn2As2 and K-doped Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2 single crystals with the trigonal CaAl2Si2-type structure as a function of temperature T and magnetic field H. EuMn2As2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu+2 spins S=7/2 at T_N1 = 15 K from C_p(T) and \chi(T) data with a likely spin-reorientation transition at T_N2 = 5.0 K. The Mn+2 3d5 spins-5/2 exhibit AFM ordering at T_N = 142 K from all three types of measurements. The M(H) isotherm and \chi(T) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu0.96K0.04Mn2As2 is sufficient to induce a metallic ground state. Evidence is found for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn2As2 versus both T and H. For metallic Eu0.96K0.04Mn2As2 and Eu0.93K0.07Mn2As2, an anomalous S-shape T dependence of \rho related to the Mn magnetism is found. Upon cooling from 200 K, \rho exhibits a strong negative curvature, reaches maximum positive slope at the Mn T_N ~ 150 K, and then continues to decrease but more slowly below T_N. This suggests that dynamic short-range AFM order of the Mn spins above the Mn T_N strongly suppresses the resistivity, contrary to the conventional decrease of \rho that is only observed upon cooling below T_N of an antiferromagnet.Comment: 21 pages, 22 figures, 4 Table

    Physical properties of EuPd2As2 single crystals

    Full text link
    The physical properties of self-flux grown EuPd2As2 single crystals have been investigated by magnetization M, magnetic susceptibility chi, specific heat Cp, and electrical resistivity rho measurements versus temperature T and magnetic field H. The crystal structure was determined by powder x-ray diffraction measurements, which confirmed the ThCr2Si2-type body-centered tetragonal structure (space group I4/mmm) reported previously. The rho(T) data indicate that state of EuPd2As2 is metallic. Long-range antiferromagnetic (AFM) ordering is apparent from the chi(T), Cp(T), and rho(T) measurements. For H \parallel c the chi(T) indicates two transitions at TN1 = 11.0 K and TN2 = 5.5 K, whereas for H \perp c only one transition is observed at TN1 = 11.0 K. Between TN1 and TN2 the anisotropic chi(T) data suggest a planar noncollinear AFM structure, whereas at T < TN2 the chi(T) and M(H,T) data suggest a spin reorientation transition in which equal numbers of spins cant in opposite directions out of the ab plane. We estimate the critical field at 2 K at which all Eu moments become aligned with the field to be about 22 T. The magnetic entropy at 25 K estimated from the Cp(T) measurements is about 11%11\% smaller than expected, possibly due to an inaccuracy in the lattice heat capacity contribution. An upturn in rho at T < TN1 suggests superzone energy gap formation below TN1. This behavior of rho(T < TN1) is not sensitive to applied magnetic fields up to H = 12 T.Comment: 11 pages, 10 figures, 2 tables and 52 references; To appear in J. Phys.: Condens. Matte

    Wireless Handheld Computers in the Preclinical Undergraduate Curriculum

    Get PDF
    This report presents the results of a pilot project using wireless PDAs as teaching tools in an undergraduate medical curriculum. This technology was used to foster a transition from a passive to an interactive learning environment in the classroom and provided a solution for the implementation of computer-based exams for a large class. Wayne State Medical School recently provided model e570 Toshiba PocketPCs® (personal digital assistants or PDAs), network interface cards, and application software developed by CampusMobility® to 20 sophomore medical students. The pilot group of preclinical students used the PDAs to access web-based course content, for communication, scheduling, to participate in interactive teaching sessions, and to complete course evaluations. Another part of this pilot has been to utilize the PDAs for computer-based exams in a wireless environment. Server authentication that restricted access during the exams and a proctoring console to monitor and record the PDA screens will be described in this report. Results of a student satisfaction survey will be present

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    Model-independent Analyses of Dark-Matter Particle Interactions

    Get PDF
    A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded in the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associates such interactions with cross sections proportional to the square of the WIMP velocity relative to the nuclear center of mass.Comment: 10 pages, 2 figures; talk presented at TAUP201

    Model-independent WIMP Scattering Responses and Event Rates: A Mathematica Package for Experimental Analysis

    Full text link
    The community's reliance on simplified descriptions of WIMP-nucleus interactions reflects the absence of analysis tools that integrate general theories of dark matter with standard treatments of nuclear response functions. To bridge this gap, we have constructed a public-domain Mathematica package for WIMP analyses based on our effective theory formulation. Script inputs are 1) the coefficients of the effective theory, through which one can characterize the low-energy consequences of arbitrary ultraviolet theories of WIMP interactions; and 2) one-body density matrices for commonly used targets, the most compact description of the relevant nuclear physics. The generality of the effective theory expansion guarantees that the script will remain relevant as new ultraviolet theories are explored; the use of density matrices to factor the nuclear physics from the particle physics will allow nuclear structure theorists to update the script as new calculations become available, independent of specific particle-physics contexts. The Mathematica package outputs the resulting response functions (and associated form factors) and also the differential event rate, once a galactic WIMP velocity profile is specified, and thus in its present form provides a complete framework for experimental analysis. The Mathematica script requires no a priori knowledge of the details of the non-relativistic effective field theory or nuclear physics, though the core concepts are reviewed here and in arXiv:1203.3542.Comment: 30+6 page
    corecore