22 research outputs found
LESI NERVUS OKULOMOTOR INVOLVED PUPIL ET CAUSA ANEURISMA PADA PASIEN DENGAN STROKE SUBARACHNOID HEMORRHAGIC DAN SYSTEMIC LUPUS ERITHEMATOSUS
Introduction: Oculomotor nerve palsy is an pathological condition caused by microvascular injury, head injury, compression due to neoplasm or aneurysm, and also oculomotor nerve palsy can be caused by autoimmune prosses. Peripheral neuropathy is one of the clinical manifestations in patient with SLE, Oculomotor nerve palsy is one type of cranial neuropathy seen with SLE patient. Patient with SLE have a higher risk of serebrovascular event than general population.
Case Illustration: Female 34 years old complained drop of the eyelid on the left eye and double vision when see with both eyes since 1 mounth before examination. Patient with history of headace and diagnosed with SLE since 2006 with regular treatment. From the examination, pupil anisocor, on the right eye pupil was 3 mm in diameter with positif direct and indirect reflex. On the left eye pupil was 6 mm with negative direct and indirect reflex. Extraocular movement on the left eye was limited except abduction movement. CT-Scan examination shows bilateral subarachnoid hemorrhage and from CT-Angiography shows dilatation of the left siphon carotid artery. Patient was diagnosed with oculomotor nerve palsy involving pupil caused by aneurysm with SAH and SLE.
Discussion: Oculomotor nerve palsy mostly caused by aneurysm compression in posterior communicating artery (PCoA) and internal carotid artery (ICA). Cerebrovascular imaging, MRA and CTAngiography, can showing the aneurysm and its location. Risk of cerebrovascular event increased in patient with SLE than general population. Management patient with oculomotor nerve palsy with SLE nowadays is with pulse dose corticosteroid.
Conclusion: SLE with oculomotor nerve palsy will increase risk of cerebrovascular event.
Key Words : Oulomotor Nerve Palsy, Subarachnoid Hemorrhage, Systemic Lupus Erithematosu
Effects of Replanting and Retention of Mature Oil Palm Riparian Buffers on Ecosystem Functioning in Oil Palm Plantations
Oil palm plantations are a major agricultural land use in Southeast Asia. In the coming decades large areas of mature oil palm will be cleared and replanted. To inform more sustainable long-term production in this globally important crop, it is crucial we understand how replanting impacts ecosystem functions and services. We investigated whether several production-relevant ecosystems functions (dung removal, soil mesofauna feeding activity, herbivory, herbivore predation, and seed predation), and the simultaneous delivery of all functions (ecosystem multifunctionality), vary between recently-replanted oil palm (1â4 years) and mature oil palm (23â30 years) areas. Following new in-country and Roundtable on Sustainable Palm Oil (RSPO) guidelines, riparian buffers of mature oil palm, in which subsequent natural regrowth is allowed, are being preserved during the replanting cycle in plantations that lack natural forest reserves. We investigated whether or not mature oil palm riparian buffers maintain levels of ecosystem functioning beneficial for palm oil production. Only one function (herbivory) differed between mature and replanted areas, with higher levels of herbivory found in recently replanted oil palm. There was no difference in ecosystem multifunctionality between mature and recently-replanted oil palm. Mature oil palm riparian buffers were found to be valuable for maintaining lower levels of herbivory than recently-replanted oil palm. However, no other functions, nor ecosystem multifunctionality, differed between the mature oil palm riparian buffers and recently-replanted oil palm. The results of this study suggest that replanting has limited impacts on the ecosystem functions we considered. Furthermore, they suggest mature oil palm riparian buffers do not have negative impacts on production-relevant ecosystem functions in oil palm landscapes.This project was made possible through funding from SMARTRI; the UK Natural Environment Research Council (NERC), the Heron-Allen Travel Scholarship, Lady Margaret Hall; and the University of Oxford Zoology Department. ES was funded under UK Natural Environment Research Council grant (NE/K016407/1). The BEFTA Programme was funded by The Isaac Newton Trust Cambridge, Golden-Agri Resources, and the UK Natural Environment Research Council grant (NE/P00458X/1)
Recommended from our members
Termite mounds house a diversity of taxa in oil palm plantations irrespective of understory management
We investigated the effects of oil palm understory vegetation management on termite mound activity and nonâtermite inhabitants. We found a diversity of taxa, most of which were unaffected by understory management. Mound volume and termite activity had taxaâspecific effects on abundance. Preserving mounds in oil palm plantations will benefit biodiversity
Restoring understory and riparian areas in oil palm plantations does not increase greenhouse gas fluxes
Oil palm (OP) plantations have replaced large areas of forest in the tropical landscape of Southeast Asia and are major emitters of greenhouse gases (GHGs). To move towards more environmentally friendly plantation management, a hopeful approach is to implement strategies to increase vegetation complexity. These options include relaxed management of understory vegetation to increase complexity in productive plantations, passive restoration of forest areas around rivers by leaving mature oil palm during replanting, and active forest restoration along river margins with planting of forest trees. These practices have the potential to deliver a range of benefits such as soil protection, reduced erosion and sedimentation in rivers, pest control and support for biodiversity, but little is known about their impact on greenhouse gas fluxes. The aim of this study was to assess the impact of improved understory growth management and the use of riparian forestry on GHG fluxes in OP plantations, making use of two long-term experiments (the Biodiversity and Ecosystem Function in Tropical Agriculture Understory Vegetation (BEFTA UV) Project; the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project) in Riau Province, Sumatra, Indonesia. We measured nitrous oxide (N2O), methane (CH4) and ecosystem respiration (CO2) from mature OP sites with different levels of understory vegetation and different riparian buffer restoration treatments using the static chamber method. We used linear mixed effects models to test for treatment effects, whilst accounting for soil moisture and experimental design factors (time and space). The understory vegetation treatments (normal, reduced and enhanced complexity of understory) had no effect on N2O and CH4 flux. Regarding differences in ecosystem respiration, effects attributable to the understory vegetation treatments were not strong. For the riparian restoration treatments, the fixed effects variables in the models explained little variation in the fluxes of all GHGs. Therefore, given the proven benefits of more complex understory vegetation for supporting biodiversity and healthy ecosystem functioning, plus the potential for restored riparian buffers to support biodiversity and services and to reduce GHG emissions over time, our findings reinforce the concept that these features bring environmental benefits in OP landscapes, with no measurable effects on GHG emissions
Restoring understory and riparian areas in oil palm plantations does not increase greenhouse gas fluxes
Oil palm (OP) plantations have replaced large areas of forest in the tropical landscape of Southeast Asia and are major emitters of greenhouse gases (GHGs). To move towards more environmentally friendly plantation management, a hopeful approach is to implement strategies to increase vegetation complexity. These options include relaxed management of understory vegetation to increase complexity in productive plantations, passive restoration of forest areas around rivers by leaving mature oil palm during replanting, and active forest restoration along river margins with planting of forest trees. These practices have the potential to deliver a range of benefits such as soil protection, reduced erosion and sedimentation in rivers, pest control and support for biodiversity, but little is known about their impact on greenhouse gas fluxes. The aim of this study was to assess the impact of improved understory growth management and the use of riparian forestry on GHG fluxes in OP plantations, making use of two long-term experiments (the Biodiversity and Ecosystem Function in Tropical Agriculture Understory Vegetation (BEFTA UV) Project; the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project) in Riau Province, Sumatra, Indonesia. We measured nitrous oxide (N 2 O), methane (CH 4) and ecosystem respiration (CO 2) from mature OP sites with different levels of understory vegetation and different riparian buffer restoration treatments using the static chamber method. We used linear mixed effects models to test for treatment effects, whilst accounting for soil moisture and experimental design factors (time and space). The understory vegetation treatments (normal, reduced and enhanced complexity of understory) had no effect on N 2 O and CH 4 flux. Regarding differences in ecosystem respiration, effects attributable to the understory vegetation treatments were not strong. For the riparian restoration treatments, the fixed effects variables in the models explained little variation in the fluxes of all GHGs. Therefore, given the proven benefits of more complex understory vegetation for supporting biodiversity and healthy ecosystem functioning, plus the potential for restored riparian buffers to support biodiversity and services and to reduce GHG emissions over time, our findings reinforce the concept that these features bring environmental benefits in OP landscapes, with no measurable effects on GHG emissions
Habitat heterogeneity supports day-flying Lepidoptera in oil palm plantations
Oil palm is one of Southeast Asia's most common crops, and its expansion has caused substantial modification of natural habitats and put increasing pressure on biodiversity. Rising global demand for vegetable oil, coupled with oil palm's high yield per unit area and the versatility of the palm oil product, has driven the expansion of oil palm agriculture in the region. Therefore, it is critical to identify management practices that can support biodiversity in plantations without exacerbating negative impacts on the environment. This study focuses on day-flying Lepidoptera (butterflies and moths), which contribute to the ecosystem functioning as pollinators, prey, and herbivore species. We assessed whether density and behaviours of day-flying Lepidoptera varied between different habitats within oil palm plantations and across seasons. We surveyed the density and behaviours of Lepidoptera communities in mature industrial oil palm plantations within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme sites, in Riau, Indonesia. We surveyed two distinct habitats within the plantations in March and September 2013: Edge habitats, which were bordered by plantation roads on one side, and Core habitats in the centre of oil palm planting blocks. We conducted analyses on the effect of habitat type and season on both the overall density and behaviour of Lepidoptera communities and, independently, on the most common species. In our surveys, we observed 1464 individuals across 41 species, with a significantly higher density in Edge than in Core habitats. While there was no significant difference between overall density in March and September surveys, there was an interaction between season and habitat, with density increasing more markedly in Edge than Core areas in September. There was also a significant effect of habitat and season on behavioural time budget for the community as a whole, with more active behaviours, such as foraging and mating, being recorded more frequently in Edge than Core habitats, and more commonly in September than March. The effect of habitat type, season, and their interaction differed between the six most common species. Our findings indicate that Lepidoptera abundance is affected by habitat characteristics in a plantation and can therefore be influenced by plantation management practices. In particular, our study highlights the value of road edges and paths in plantations for day-flying Lepidoptera. We suggest that increased non-crop vegetation in these areas, achieved through reduced clearing practices or planting of flowering plants, could foster abundant and active butterfly communities in plantations. These practices could form part of sustainability management recommendations for oil palm, such as those of the Roundtable on Sustainable Palm Oil
Recommended from our members
Maintaining understory vegetation in oil palm plantations supports higher assassin bug numbers
1. The expansion of oil palm agriculture across Southeast Asia has caused significant biodiversity losses, with the reduction in habitat heterogeneity that accompanies the conversion of forest to oil palm being a major contributing factor. However, owing to their long commercial lifespan, oil palm plantations can support relatively high levels of vegetation complexity compared to annual crops. There is therefore potential for the implementation of management strategies to increase vegetation complexity and associated within-plantation habitat heterogeneity, enhancing species richness and associated ecosystem functioning within productive oil palm landscapes. 2. This study focusses on two species of assassin bugs Cosmolestes picticeps and Sycanus dichotomus, which are important agents of pest control within oil palm systems. Using a Before-After Control-Impact experimental manipulation in Sumatra, Indonesia, we tested the effect of three alternative herbicide spraying regimes and associated vegetation complexity treatments on assassin bug numbers. Our treatments encompass a range of current understory vegetation management practices used in oil palm plantations and include removing vegetation only in areas key to harvesting (âNormalâ), removing all understory vegetation (âReducedâ), and allowing native vegetation to regrow naturally (âEnhancedâ). We assessed both the long-term (18 months) and short-term (within 2 weeks) effects of our treatments following herbicide spraying. 3. Pre-treatment, we found high numbers of assassin bugs of both species in all plots. Long-term post-treatment, the abundance of both C. picticeps and S. dichotomus declined in Reduced understory plots, although this decline was only significant for C. picticeps (98%). In contrast, there were no significant differences in the post-treatment abundance of either species in the short-term. 4. These results suggest that the long-term decline in assassin bug abundance was likely to be caused by loss of vegetation, rather than any immediate effects of the herbicide spraying. Our findings have clear management implications as they demonstrate that maintaining vegetation in oil palm understories can benefit an important pest control agent
Understory vegetation supports more abundant and diverse butterfly communities in oil palm plantations
IntroductionThe cultivation of oil palm, from which palm oil, the worldâs most widely traded vegetable oil, is processed, has had marked effects on ecosystems and native species across the tropics. While declines in biodiversity due to conversion to oil palm have been well recorded across plant and animal taxa, less work has been done to identify approaches to plantation management which will enable producers to satisfy growing global demand while limiting environmental damage.MethodsThrough a large-scale understory management experiment, we investigated the long- and short-term effects of varying vegetation management regimes on the abundance, richness, and diversity of day-flying Lepidoptera.ResultsOver the long-term, the lowest levels of vegetation complexity resulted in significantly lower Lepidoptera abundance, species richness and evenness. Less intensive understory clearing resulted in healthier communities, with limited differences between removal by herbicide application or chemical-free removal. Over the short-term, biodiversity was not directly affected by vegetation complexity, suggesting that manual removal of vegetation may be equally damaging to butterfly or moth communities as removal by intermediate levels of herbicide spraying.DiscussionThese findings substantiate calls to limit vegetation clearing and maintain habitat heterogeneity on both a local and landscape scale, while also suggesting that a hard âno-sprayâ guideline may not be the only option to support butterfly friendly plantations
Recommended from our members
Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme
Conversion of tropical forest to agriculture results in reduced habitat heterogeneity, and associated declines in biodiversity and ecosystem functions. Management strategies to increase biodiversity in agricultural landscapes have therefore often focused on increasing habitat complexity; however, the large-scale, long-term ecological experiments that are needed to test the effects of these strategies are rare in tropical systems. Oil palm (Elaeis guineensis Jacq.)âone of the most widespread and important tropical cropsâoffers substantial potential for developing wildlife-friendly management strategies because of its long rotation cycles and tree-like structure. Although there is awareness of the need to increase sustainability, practical options for how best to manage oil palm plantations, for benefits to both the environment and crop productivity, have received little research attention. In this paper we introduce the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme: a long-term research collaboration between academia and industry in Sumatra, Indonesia. The BEFTA Programme aims to better understand the oil palm agroecosystem and test sustainability strategies. We hypothesise that adjustments to oil palm management could increase structural complexity, stabilise microclimate, and reduce reliance on chemical inputs, thereby helping to improve levels of biodiversity and ecosystem functions. The Programme has established four major components: (1) assessing variability within the plantation under business-as-usual conditions; (2) the BEFTA Understory Vegetation Project, which tests the effects of varying herbicide regimes; (3) the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project, which tests strategies for restoring riparian habitat; and (4) support for additional collaborative projects within the Programme landscape. Across all projects, we are measuring environmental conditions, biodiversity, and ecosystem functions. We also measure oil palm yield and production costs, in order to assess whether suggested sustainability strategies are feasible from an agronomic perspective. Early results show that oil palm plantation habitat is more variable than might be expected from a monoculture crop, and that everyday vegetation management decisions have significant impacts on habitat structure. The BEFTA Programme highlights the value of large-scale collaborative projects for understanding tropical agricultural systems, and offers a highly valuable experimental set-up for improving our understanding of practices to manage oil palm more sustainably