13 research outputs found

    Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity

    No full text
    The aim of this paper is to assess the properties of Mamaia (MM) grape pomace polyphenolic extract loaded onto pristine and functionalized MCM-41 mesoporous silica as potential ingredients for nutraceuticals or cosmetics. The chemical profile of hydroalcoholic polyphenolic extracts, prepared either by conventional extraction or microwave-assisted method, was analyzed by reverse-phase high-performance liquid chromatography with photodiode array detector (HPLC-PDA) analysis, while their radical scavenger activity (RSA) was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl radical) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assays. The extract-loaded materials were characterized by Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isotherms, thermogravimetric analysis, as well as RSA (DPPH and ABTS assays). The polyphenols release profiles from pristine and functionalized (with mercaptopropyl, propyl sulfonic acid, cyanoethyl and propionic acid moieties) MCM-41-type supports were determined in phosphate buffer solution (PBS) pH 5.7. For selected materials containing embedded phytochemicals, cellular viability, and oxidative stress level on immortalized mouse embryonic fibroblast cell line (NIH3T3) were evaluated. A more acidic functional groups linked on silica pore walls determined a higher amount of phytochemicals released in PBS. The extract-loaded materials showed a good cytocompatibility on tested concentrations. The embedded extract preserved better the RSA over time than the free extract. The polyphenols-loaded MCM-41-type silica materials, especially MM@MCM-COOH material, demonstrated a good in vitro antioxidant effect on NIH3T3 cells, being potential candidates for nutraceutical or cosmetic formulations

    Design of Nanoplatforms for Targeted Delivery of Irinotecan

    No full text
    Irinotecan is an antineoplastic used for the treatment of different types of cancer and solid tumors (rectal, colon, ovarian and glioblastoma) [...

    Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application

    No full text
    Lesions can affect skin functions and cause a simple issue, such as dehydration, or more challenging complications, such as bacterial infections. The purpose of this study was to design composites for topical application that can prevent and/or assist in bacterial infections and support cell regeneration using natural components. A polyphenolic extract obtained from Salvia officinalis was embedded in functionalized mesoporous silica nanoparticles for better stability, followed by their distribution into a collagen porous scaffold. The resulting polyphenols-loaded MSN exhibited enhanced antibacterial activity and good cytocompatibility. Improved thermal stability of the collagen porous scaffold was obtained due to the presence of the functionalized MSN. For the first time, collagen-polyphenols-loaded silica composites were reported in the literature as potential wound dressings. The newly developed composites showed excellent sterility

    Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application

    No full text
    Lesions can affect skin functions and cause a simple issue, such as dehydration, or more challenging complications, such as bacterial infections. The purpose of this study was to design composites for topical application that can prevent and/or assist in bacterial infections and support cell regeneration using natural components. A polyphenolic extract obtained from Salvia officinalis was embedded in functionalized mesoporous silica nanoparticles for better stability, followed by their distribution into a collagen porous scaffold. The resulting polyphenols-loaded MSN exhibited enhanced antibacterial activity and good cytocompatibility. Improved thermal stability of the collagen porous scaffold was obtained due to the presence of the functionalized MSN. For the first time, collagen-polyphenols-loaded silica composites were reported in the literature as potential wound dressings. The newly developed composites showed excellent sterility

    Nanoplatforms for Irinotecan Delivery Based on Mesoporous Silica Modified with a Natural Polysaccharide

    No full text
    Natural compounds are an important source of beneficial components that could be used in cancer therapy along with well-known cytostatic agents to enhance the therapeutic effect while targeting tumoral tissues. Therefore, nanoplatforms containing mesoporous silica and a natural polysaccharide, ulvan, extracted from Ulva Lactuca seaweed, were developed for irinotecan. Either mesoporous silica-ulvan nanoplatforms or irinotecan-loaded materials were structurally and morphologically characterized. In vitro drug release experiments in phosphate buffer solution with a pH of 7.6 emphasized the complete recovery of irinotecan in 8 h. Slower kinetics were obtained for the nanoplatforms with a higher amount of natural polysaccharide. Ulvan extract proved to be biocompatible up to 2 mg/mL on fibroblasts L929 cell line. The irinotecan-loaded nanoplatforms exhibited better anticancer activity than that of the drug alone on human colorectal adenocarcinoma cells (HT-29), reducing their viability to 60% after 24 h. Moreover, the cell cycle analysis proved that the irinotecan loading onto developed nanoplatforms caused an increase in the cell number trapped at G0/G1 phase and influenced the development of the tumoral cells

    Mesoporous Silica and Titania-Based Materials for Stability Enhancement of Polyphenols

    No full text
    To improve phytochemical stability, polyphenolic extracts prepared from Salvia officinalis L., which is a valuable source of phytocompounds with health benefits, were embedded into mesopores of silica, titania, or titania-ceria materials. Ethanolic and hydroalcoholic extracts were prepared by conventional, microwave- or ultrasound-assisted extraction. The influence of the extraction conditions on chemical profile, radical scavenger activity (RSA), and antimicrobial potential of the extracts was assessed. The extracts were characterized by spectrophotometric determination of total polyphenols, flavonoids, chlorophyll pigment contents, as well as RSA. A reverse phase HPLC- PDA analysis was performed for the identification and quantification of extract polyphenols. The extract-loaded materials exhibited an enhanced RSA compared to the free extract after several months of storage, resulting in better polyphenol stability over time following embedding into a mesoporous matrix. Selected extracts free and embedded into mesoporous support were tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 25923; the best antimicrobial activity was obtained for S. aureus. A slight improvement in antimicrobial activity was observed for the ethanolic extract prepared by ultrasound-assisted extraction following embedding into the TiO2 matrix compared to MCM-41 silica due to the support contribution

    Resveratrol Encapsulation and Release from Pristine and Functionalized Mesoporous Silica Carriers

    No full text
    Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol–loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer

    The Antioxidant and Anti-Inflammatory Properties of Wild Bilberry Fruit Extracts Embedded in Mesoporous Silica-Type Supports: A Stability Study

    No full text
    Polyphenolic extracts from wild bilberries (Vaccinium myrtillus L.) have shown antioxidant and anti-inflammatory effects, but they are prone to degradation when exposed to environmental factors, limiting their use in biomedical applications. To overcome this issue, this study proposed the embedding of wild bilberry fruit ethanolic extracts in pristine mesoporous silica functionalized with organic groups (mercaptopropyl and propionic acid), as well as coated with fucoidan, a biopolymer. Herein, we report a stability study of free and incorporated extracts in mesoporous silica-type supports in high-humidity atmospheres at 40 °C up to 28 days, using HPLC analysis, thermal analysis, and radical scavenging activity determination. Better chemical and thermal stability over time was observed when the extracts were incorporated in mesoporous silica-type supports. After 12 months of storage, higher values of antioxidant activity were determined for the extract embedded in the supports, silica modified with mercaptopropyl groups (MCM-SH), and fucoidan-coated silica (MCM-SH-Fuc) than that of the free extract due to a synergistic activity between the support and extract. All encapsulated extracts demonstrated remarkable effects in reducing NO production in LPS-stimulated RAW 264.7 cells. The treatment with extract embedded in MCM-SH-Fuc in a dose of 10 μg/mL surpassed the effect of free extract in the same concentration. For the extract encapsulated in an MCM-SH support, a lower IC50 value (0.69 μg/mL) towards COX-2 was obtained, comparable with that of Indomethacin (0.6 μg/mL). Also, this sample showed a higher selectivity index (2.71) for COX-2 than the reference anti-inflammatory drug (0.98). The developed formulations with antioxidant and anti-inflammatory properties could be further used in nutraceuticals
    corecore