1 research outputs found

    Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming

    No full text
    Advanced porous synthetic scaffolds are particularly suitable for regeneration of damaged tissues, but there is the risk of infections due to the colonization of microorganisms, forming biofilms. Supercritical foaming is an attractive processing method to prepare bone scaffolds, regulating simultaneously the porosity and loading of bioactive compounds without loss of activity. In this work, scaffolds made of poly-ε-caprolactone (50 kDa), containing chitosan and an antimicrobial agent (vancomycin), were processed by supercritical CO<sub>2</sub> foaming for bone regeneration purposes. The obtained scaffolds showed a suitable combination of morphological (porosity, pore size distribution, and interconnectivity), time-dependent in vitro vancomycin release behavior and biological properties (cell viability and proliferation, osteodifferentiation, and tissue-scaffold integration). The scaffolds sustained vancomycin release for more than 2 weeks. Finally, the antimicrobial activity of the scaffolds was tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria after 24 h of incubation with full growth inhibition for S. aureus
    corecore