5 research outputs found

    A model of multilingual digital library

    Get PDF
    Este trabalho aborda o problema de bibliotecas digitais multilĂ­ngĂŒes. A motiviação para tal biblioteca digital decorre da diversidade de lĂ­nguas dos usuĂĄrios da Internet, bem como da diversidade dos autores do conteĂșdo, de autores de livros eletrĂŽnicos para elaboradores de cursos. SĂŁo discutidas as definiçÔes bĂĄsicas de tal sistema, as especificaçÔes de sua funcionalidade e a identificação dos itens que ele comporta. Apresenta-se o impacto do multilingĂŒismo em cada um dos aspectos anteriores. Um estudo de caso de uma biblioteca digital multilĂ­ngĂŒe – no Sistema Maxwell, na PUC-Rio – Ă© descrito nas Ășltimas seçÔes. Suas principais caracterĂ­sticas sĂŁo descritas e Ă© mostrado o status atual de sua biblioteca digital

    Using a 3-tier Training Model for Effective Exchange of Good Practices in as ERASMUS+ Project

    Get PDF
    VISIR+ is an Erasmus+ project that aims to develop educational modules for electric and electronic circuits theory and practice following an enquiry-based teaching and learning methodology. The project has installed five new VISIR remote labs in Higher Education Institutions located in Argentina and Brazil, to allow students doing more experiments and hence acquire better experimental skills, through a combination of traditional (hands-on), remote and virtual laboratories. A key aspect for the success of this project was to motivate and train teachers in the underpinning educational methodology. As such, VISIR+ adopted a 3-tier training process to effectively support the use of VISIR in the Institutions that received it. This process is based on the “train the trainer” approach, which required the participating partner institutions to identify and engage a number of associated partners, interested in using their newly installed remote lab. To measure the quality of the training process, the same satisfaction questionnaire was used in all training actions. This paper presents a detailed description of the training actions along with the analysis of the satisfaction questionnaire results. Major conclusions are that the quality level of the training process remained practically the same across all training actions and that trainees sometimes considered the practical use of the VISIR remote lab as difficult, irrespectively of where and when the training action took place.info:eu-repo/semantics/publishedVersio

    Spreading remote lab usage: A system — A community — A Federation

    Get PDF
    Experiments have been at the heart of scientific development and education for centuries. From the outburst of Information and Communication Technologies, virtual and remote labs have added to hands-on labs a new conception of practical experience, especially in Science, Technology, Engineering and Mathematics education. This paper aims at describing the features of a remote lab named Virtual Instruments System in Reality, embedded in a community of practice and forming the spearhead of a federation of remote labs. More particularly, it discusses the advantages and disadvantages of remote labs over virtual labs as regards to scalability constraints and development and maintenance costs. Finally, it describes an actual implementation in an international community of practice of engineering schools forming the embryo of a first world wide federation of Virtual Instruments System in Reality nodes, under the framework of a project funded by the Erasmus+ Program.info:eu-repo/semantics/publishedVersio

    Chapter 1

    Get PDF
    Experimenting is fundamental to the training process of all scientists and engineers. While experiments have been traditionally done inside laboratories, the emergence of Information and Communication Technologies added two alter-natives accessible anytime, anywhere. These two alternatives are known as virtual and remote labs, and are sometimes indistinguishably referred as online labs. Sim-ilarly to other instructional technologies, virtual and remote labs require some ef-fort from teachers in integrating them into curricula, taking into consideration sev-eral factors that affect their adoption (i.e. cost) and their educational effectiveness (i.e. benefit). This chapter analyses these two dimensions and sustains the case where only through international cooperation it is possible to serve the large num-ber of teachers and students involved in engineering education. It presents an ex-ample in the area of Electrical and Electronics Engineering, based on a remote lab named Virtual Instruments System in Reality, and it then describes how a number of European and Latin-American institutions have been cooperating under the scope of an Erasmus+ project2, for spreading its use in Brazil and Argentina.info:eu-repo/semantics/publishedVersio
    corecore