18 research outputs found

    Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses

    Get PDF
    Over 4 million infants die each year from infections, many of which are vaccine-preventable. Young infants respond relatively poorly to many infections and vaccines, but the basis of reduced immunity in infants is ill defined. We sought to investigate whether myeloid-derived suppressor cells (MDSC) represent one potential impediment to protective immunity in early life, which may help inform strategies for effective vaccination prior to pathogen exposure. We enrolled healthy neonates and children in the first 2 years of life along with healthy adult controls to examine the frequency and function of MDSC, a cell population able to potently suppress T cell responses. We found that MDSC, which are rarely seen in healthy adults, are present in high numbers in neonates and their frequency rapidly decreases during the first months of life. We determined that these neonatal MDSC are of granulocytic origin (G-MDSC), and suppress both CD4+ and CD8+ T cell proliferative responses in a contact-dependent manner and gamma interferon production. Understanding the role G-MDSC play in infant immunity could improve vaccine responsiveness in newborns and reduce mortality due to early-life infections

    Global Health: A Successful Context for Precollege Training and Advocacy

    Get PDF
    Despite a flourishing biomedical and global health industry [1] too few of Washington state's precollege students are aware of this growing sector and emerging ideas on bacteria, fungi, parasites and viruses. Against the backdrop of numerous reports regarding declining precollege student interest in science [2], a precollege program was envisioned at Seattle Biomedical Research Institute (as of 2010, Seattle BioMed) to increase youth engagement in biomedical research and global health, increase community interest in infectious diseases and mobilize a future biomedical workforce. Since 2005, 169 rising high school juniors have participated in the BioQuest Academy precollege immersion program at Seattle BioMed. Assembling in groups of 12, students conduct laboratory experiments (e.g., anopheline mosquito dissection, gene expression informed tuberculosis drug design and optimizing HIV immunization strategies) related to global health alongside practicing scientific mentors, all within the footprint the institute. Laudable short-term impacts of the program include positive influences on student interest in global health (as seen in the students' subsequent school projects and their participation in Seattle BioMed community events), biomedical careers and graduate school (e.g., 16.9% of teens departing 2008–2009 Academy report revised goals of attaining a doctorate rather than a baccalaureate diploma). Long-term, 97% of alumni (2005–2008) are attending postsecondary schools throughout North America; eight graduates have already published scientific articles in peer-reviewed journals and/or presented their scientific data at national and international meetings, and 26 have been retained by Seattle BioMed researchers as compensated technicians and interns. Providing precollege students with structured access to practicing scientists and authentic research environments within the context of advancing global health has been a robust means of both building a future pool of talented leaders and engaged citizenry and increasing the visibility of health disparities within the community

    2005-09 Academy student pre- and post-perceptions.

    No full text
    <p>Using quasi-experimental methods of pre-post testing each year, students have responded to a variety of questions that reveal students' significant gains in global health and biomedical research content between pre- and post- program responses, * =  p<.001.</p

    BioQuest Academy 2008-09 laboratory activities.

    No full text
    <p>Alignment of BioQuest Academy resources to Washington State high school science standards has been confirmed by external curriculum consultants <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0013814#pone.0013814-Office1" target="_blank">[17]</a>.</p

    2005-09 cohort description and post-secondary trajectories.

    No full text
    <p>Students enrolled in 2005-7 sessions participated in a 30 hour program. Students, recruited through year-long enrollment activities, participated in a 60 hour program.</p

    Differential Regulation of Inflammatory Cytokine Secretion by Human Dendritic Cells upon Chlamydia trachomatis Infection

    No full text
    Chlamydia trachomatis is an obligate intracellular gram-negative bacterium responsible for a wide spectrum of diseases in humans. Both genital and ocular C. trachomatis infections are associated with tissue inflammation and pathology. Dendritic cells (DC) play an important role in both innate and adaptive immune responses to microbial pathogens and are a source of inflammatory cytokines. To determine the potential contribution of DC to the inflammatory process, human DC were infected with C. trachomatis serovar E or L2. Both C. trachomatis serovars were found to infect and replicate in DC. Upon infection, DC up-regulated the expression of costimulatory (B7-1) and cell adhesion (ICAM-1) molecules. Furthermore, chlamydial infection induced the secretion of interleukin-1β (IL-1β), IL-6, IL-8, IL-12p70, IL-18, and tumor necrosis factor alpha (TNF-α). The mechanisms involved in Chlamydia-induced IL-1β and IL-18 secretion differed from those of the other cytokines. Chlamydia-induced IL-1β and IL-18 secretion required infection with viable bacteria and was associated with the Chlamydia-induced activation of caspase-1 in infected host cells. In contrast, TNF-α and IL-6 secretion did not require that the Chlamydia be viable, suggesting that there are at least two mechanisms involved in the Chlamydia-induced cytokine secretion in DC. Interestingly, an antibody to Toll-like receptor 4 inhibited Chlamydia-induced IL-1β, IL-6, and TNF-α secretion. The data herein demonstrate that DC can be infected by human C. trachomatis serovars and that chlamydial components regulate the secretion of various cytokines in DC. Collectively, these data suggest that DC play a role in the inflammatory processes caused by chlamydial infections
    corecore