14 research outputs found

    Economic Impacts on Human Health Resulting from the Use of Mercury in the Illegal Gold Mining in the Brazilian Amazon: A Methodological Assessment

    No full text
    Artisanal small-scale gold mining (ASGM) in the Amazon results in the dumping of tons of mercury into the environment annually. Despite consensus on the impacts of mercury on human health, there are still unknowns regarding: (i) the extent to which mercury from ASGM can be dispersed in the environment until it becomes toxic to humans; and (ii) the economic value of losses caused by contamination becomes evident. The main objective of this study is to propose a methodology to evaluate the impacts of ASGM on human health in different contexts in the Brazilian Amazon. We connect several points in the literature based on hypotheses regarding mercury dispersion in water, its transformation into methylmercury, and absorption by fish and humans. This methodology can be used as a tool to estimate the extent of environmental damage caused by artisanal gold mining, the severity of damage to the health of individuals contaminated by mercury and, consequently, can contribute to the application of fines to environmental violators. The consequences of contamination are evaluated by dose-response functions relating to mercury concentrations in hair and the development of the following health outcomes: (i) mild mental retardation, (ii) acute myocardial infarction, and (iii) hypertension. From disability-adjusted life years and statistical life value, we found that the economic losses range from 100,000 to 400,000 USD per kilogram of gold extracted. A case study of the Yanomami indigenous land shows that the impacts of mercury from illegal gold mining in 2020 totaled 69 million USD, which could be used by local authorities to compensate the Yanomami people

    Health Risk Assessment Attributed to Consumption of Fish Contaminated with Mercury in the Rio Branco Basin, Roraima, Amazon, Brazil

    No full text
    The aim of this study was to assess the health risk attributable to the consumption of mercury-contaminated fish for the urban and non-urban populations living in the Roraima state, Amazon, Brazil. Seventy-five fish specimens distributed across twenty different species, comprising four trophic levels (i.e., herbivore, omnivore, detritivore, and carnivore), were collected at four locations in the Branco River Basin. The fish samples were sent to the Toxicology Laboratory at Evandro Chagas Institute to determine the total-Hg levels by using the cold vapor atomic system (CVAAS). The total-Hg levels ranged from 0 to 3.159 µg/g. The average concentration in non-carnivorous species (n = 32) was 0.116 µg/g, and among carnivorous fish (n = 43), it was 0.869 µg/g. The weighted average of contamination levels for all samples was 0.545 µg/g. The health risk assessment was conducted according to the methodology proposed by the World Health Organization and different scenarios of human exposure were considered, based on three levels of fish consumption (low: 50 g/day; moderate: 100 g/day and high: 200 g/day). Women of childbearing age ingest 5 to 21 times more mercury than the dose considered safe by the U.S. EPA and intake a dose from 2 to 9 times higher than the safe dose proposed by FAO/WHO. Children under 5 years of age ingest from 18 to 75 times the dose proposed by the U.S. EPA and from 8 to 32 more mercury than the limit proposed by FAO/WHO. In summary, regardless of the level of fish consumption, type of residency (urban or non-urban), and the subset of the population analyzed, anyone who consumes fish from the locations sampled is at high risk attributable to mercury ingestion, with the only exception of adult men, who consume an average of 50 g of fish per day

    Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities

    No full text
    There has been increasing evidence about mercury (Hg) contamination in traditional populations from the Amazon Basin due to illegal gold mining. The most concerning health impact is neurotoxicity caused by Hg in its organic form: methylmercury (MeHg). However, the severity and extent of the neurotoxic effects resulting from chronic environmental exposure to MeHg are still unclear. We conducted a clinical-epidemiological study to evaluate the neurological impacts of chronic MeHg exposure in Munduruku indigenous people, focusing on somatosensory, motor, and cognitive abnormalities. All participants were subjected to a systemized neurological exam protocol, including Brief Cognitive Screening Battery (BCSB), verbal fluency test, and Stick Design Test. After the examination, hair samples were collected to determine MeHg levels. Data collection took place between 29 October and 9 November 2019, in three villages (Sawré Muybu, Poxo Muybu, and Sawré Aboy) from Sawré Muybu Indigenous Land, Southwest of Pará state. One hundred and ten individuals >12 years old were included, 58 of which were men (52.7%), with an average age of 27.6 years (range from 12 to 72). Participants’ median MeHg level was 7.4 µg/g (average: 8.7; S.D: 4.5; range: 2.0–22.8). In Sawré Aboy village, the median MeHg level was higher (12.5 µg/g) than in the others, showing a significant statistical exposure gradient (Kruskal–Wallis test with p-value < 0.001). Cerebellar ataxia was observed in two participants with MeHg levels of 11.68 and 15.68 µg/g. Individuals with MeHg exposure level ≥10 µg/g presented around two-fold higher chances of cognitive deficits (RP: 2.2; CI 95%: 1.13–4.26) in BCSB, and in the verbal fluency test (RP: 2.0; CI 95%: 1.18–3.35). Furthermore, adolescents of 12 to 19 years presented three-fold higher chances of verbal development deficits, according to the fluency test (RP: 3.2; CI 95%: 1.06–9.42), than individuals of 20 to 24 years. The worsened motor and cognitive functions are suggestive of neurotoxicity due to chronic MeHg exposure. In conclusion, we believe monitoring and follow-up measures are necessary for chronic mercury exposed vulnerable people, and a basic care protocol should be established for contaminated people in the Brazilian Unified Health System

    Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study

    No full text
    Mercury is one of the most dangerous contaminants on the planet. In recent years, evidence of mercury contamination in the Amazon has significantly increased, notably due to gold-mining activities. Although mercury contamination in fish has consistently been documented, little is known about the risk associated with fish consumption by populations in urban areas of the Amazon. We sampled 1010 fish sold in public markets in six state capitals and 11 additional cities. Mercury levels were determined for each specimen, and the evaluation of the health risks associated with consuming mercury-contaminated fish was conducted according to the methodology proposed by the World Health Organization (WHO). Our study reveals that more than one-fifth (21.3%) of the fish sold in urban centers had mercury levels above the safe limits (≥0.5 µg/g) established by the Brazilian Health Surveillance Agency (ANVISA). The prevalence of Hg contamination ≥0.5 µg/g was approximately 14 times higher in carnivorous than in noncarnivorous fish. The analysis of the risk attributable to fish consumption reveals that daily mercury intake exceeded the reference dose recommended by the U.S. EPA in all population groups analyzed, reaching up to 7 and 31 times in women of childbearing age and children from 2 to 4 years old, respectively. However, these risks are diverse depending on the type of fish consumed and must be considered to formulate appropriate nutritional guidelines for safe fish consumption by the local community

    Health Risk Assessment of Mercury Exposure from Fish Consumption in Munduruku Indigenous Communities in the Brazilian Amazon

    No full text
    Fish serves as the principal source of animal protein for the indigenous people of the Amazon, ensuring their food and nutritional security. However, gold mining causes mercury (Hg) contamination in fish, and consequently increases health risks associated with fish consumption. The aim of this study was to assess the health risk attributed to the consumption of mercury-contaminated fish by Munduruku indigenous communities in the Middle-Tapajós Region. Different fish species were collected in the Sawré Muybu Indigenous Land to determine mercury levels. The health risk assessment was carried out according to the World Health Organization (WHO 2008) methodology and different scenarios were built for counterfactual analysis. Eighty-eight fish specimens from 17 species and four trophic levels were analyzed. Estimates of Hg ingestion indicated that the methylmercury daily intake exceeds the U.S. EPA (United States Environmental Protection Agency) (2000) reference dose from 3 to 25-fold, and up to 11 times the FAO (Food and Agriculture Organization)/WHO (2003) dose recommendation. In all situations analyzed, the risk ratio estimates were above 1.0, meaning that the investigated Munduruku communities are at serious risk of harm as a result of ingestion of mercury-contaminated fish. These results indicate that, at present, fish consumption is not safe for this Munduruku population. This hazardous situation threatens the survival of this indigenous population, their food security, and their culture

    An assessment of health outcomes and methylmercury exposure in munduruku indigenous women of childbearing age and their children under 2 years old

    No full text
    This research was funded by the Vice-Presidency of Environment, Care and Health Promotion (VPPAS) of Fundação Oswaldo Cruz through (Fiocruz) Decentralized Execution of Resources Document No. 175/2018, Process: 25000.209221/2018-18, signed between the Fiocruz and the Special Department for Indigenous Health, both under the Ministry of Health. The non-governmental organization WWF-Brazil offered financial support to disseminate the results of the research.Imperial College. Faculty of Medicine. St Mary’s Hospital. London, UK.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Departamento de Endemias Samuel Pessoa. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Instituto de Pediatria e Puericultura Martagão Gesteira. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Escola Politécnica de Saúde Joaquim Venâncio. Laboratório de Educação Profissional em Vigilância em Saúde. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Centro de Referência Professor Hélio Fraga. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Instituto de Pediatria e Puericultura Martagão Gesteira. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Instituto de Pediatria e Puericultura Martagão Gesteira. Rio de Janeiro, RJ, Brazil.In line with the 1000-day initiative and the Sustainable Development Goals (SDG) 2 and 3, we present a cross-sectional analysis of maternal health, infant nutrition, and methylmercury exposure within hard-to-reach indigenous communities in the state of Pará, Brazilian Amazon. We collected data from all women of childbearing age (i.e., 12–49) and their infants under two years old in three Munduruku communities (Sawré Muybu, Sawré Aboy, and Poxo Muybu) along the Tapajos River. We explored health outcomes through interviews, vaccine coverage and clinical assessment, and determined baseline hair methylmercury (H-Hg) levels. Hemoglobin, infant growth (Anthropometric Z scores) and neurodevelopment tests results were collected. We found that 62% of women of childbearing age exceeded the reference limit of 6.0 μg/g H-Hg (median = 7.115, IQR = 4.678), with the worst affected community (Sawré Aboy) registering an average H-Hg concentration of 12.67 μg/g. Half of infants aged under 24 months presented with anemia. Three of 16 (18.8%) infants presented H-Hg levels above 6.0 µg/g (median: 3.88; IQR = 3.05). Four of the 16 infants were found to be stunted and 38% of women overweight, evidencing possible nutritional transition. No infant presented with appropriate vaccination coverage for their age. These communities presented with an estimated Infant Mortality Rate (IMR) of 86.7/1000 live births. The highest H-Hg level (19.6 µg/g) was recorded in an 11-month-old girl who was found to have gross motor delay and anemia. This already vulnerable indigenous Munduruku community presents with undernutrition and a high prevalence of chronic methylmercury exposure in women of childbearing age. This dual public health crisis in the context of wider health inequalities has the potential to compromise the development, health and survival of the developing fetus and infant in the first two critical years of life. We encourage culturally sensitive intervention and further research to focus effort

    Chronic Mercury Exposure and GSTP1 Polymorphism in Munduruku Indigenous from Brazilian Amazon

    No full text
    Genetic polymorphisms may be involved with mercury levels and signs and symptoms of intoxication from this exposure. Therefore, the aims were to describe the frequency of the GSTP1 polymorphism and to evaluate its effects on mercury levels and neurological signs in three Munduruku indigenous villages in the Brazilian Amazon. One-hundred-and-seven indigenous (over 12 years old) were included and genotyped (rs1695) using a TaqMan validated assay. Then, associations were evaluated by binary logistic regression, using odds ratios (OR) and 95% confidence intervals (CI). Mean age was 27.4 ± 13.9 years old, 52.3% were male, mean hair mercury concentration was 8.5 ± 4.3, exceeding the reference limit (≥ 6.0 µg/g), and were different among the three villages: 13.5 ± 4.6 µg/g in Sawré Aboy, 7.4 ± 2.3 µg/g in Poxo Muybu and 6.9±3.5 µg/g in Sawré Muybu. The minor allele frequency of GSTP1 G was significantly different among the villages: 57% Sawré Muybu, 21% Poxo Muybu and 15% Sawré Aboy. Finally, after adjustment, GSTP1 GG and GA genotypes were associated with lower levels of Hg (OR = 0.13; CI95% = 0.03–0.49) and abnormal somatosensory signs (OR = 3.7; 95%IC = 1.5–9.3), respectively. In conclusion, monitoring this population is imperative to identify individuals at higher risk of developing signs of chronic mercury exposure based on the genetic profile

    Genetic Polymorphism of Delta Aminolevulinic Acid Dehydratase (ALAD) Gene and Symptoms of Chronic Mercury Exposure in Munduruku Indigenous Children within the Brazilian Amazon

    No full text
    Genetic polymorphisms involved in mercury toxicokinetics and toxicodynamics may be associated with severe mercury toxicity. This study aimed to investigate the impact of an ALAD polymorphism on chronic mercury exposure and the health situation of indigenous children from the Brazilian Amazon. One-hundred-and-three indigenous children (under 15 years old) were included and genotyped (rs1800435) using a TaqMan validated assay. The mean age was 6.6 ± 4.5 years old, 60% were female, 49% presented with anemia, and the mean hair mercury concentration was 7.0 ± 4.5 (1.4–23.9) µg/g, with 49% exceeding the reference limit (≥6.0 µg/g). Only two children were heterozygous ALAD, while the others were all wild type. Minor allele frequency (ALAD G) and heterozygous genotype (ALAD CG) were 1% and 2%, respectively. The two children (12 and 14 years old) with the ALAD polymorphism had mercury levels above the average as well as had neurological symptoms related to chronic mercury exposure, such as visual field alterations, memory deficit, distal neuropathy, and toe amyotrophy. Both children also reported frequent consumption of fish in the diet, at least three times a week. In conclusion, our data confirm that an ALAD polymorphism can contribute to mercury half-life time, harmful effects, and neuropsychological disorders in indigenous children with chronic mercury exposure to gold mining activity

    Chronic mercury exposure and GSTP1 polymorphism in Munduruku Indigenous from Brazilian Amazon

    No full text
    This research was funded by the vice presidency of environment, care and health promotion (VPAAS) of Fundação Oswaldo Cruz through the Decentralized Execution of Resources Document No. 175/2018, Process: 25000.209221/2018-18, signed between the Fundação Oswaldo Cruz and the Special Department for Indigenous Health, both under the Ministry of Health. This study was supported by the Brazilian agency Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).State University of Rio de Janeiro - West Zone. Research Laboratory of Pharmaceutical Sciences. Rio de Janeiro, RJ, Brazil / Oswald Cruz Foundation. National School of Public Health. Program of Post-Graduation in Public Health and Environment. Rio de Janeiro, RJ, Brazil.University of São Paulo. Faculty of Medicine. São Paulo, SP, Brazil.Oswald Cruz Foundation. Polytechnic School of Health Joaquim Venâcio. Laboratory of Professional Education in Health Surveillance. Rio de Janeiro, RJ, Brazil.University of São Paulo. Faculty of Medicine. São Paulo, SP, Brazil.University of São Paulo. Faculty of Medicine. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde e Ambiente. Instituto Evandro Chagas. Ananindeua, PA, Brasil.State University of Rio de Janeiro - West Zone. Research Laboratory of Pharmaceutical Sciences. Rio de Janeiro, RJ, Brazil.Oswald Cruz Foundation. Polytechnic School of Health Joaquim Venâcio. Department of Endemic Diseases Samuel Pessoa. Rio de Janeiro, RJ, Brazil.Oswald Cruz Foundation. Polytechnic School of Health Joaquim Venâcio. Program of Post-Graduation in Public Health and Environment. Rio de Janeiro, RJ, Brazil / Oswald Cruz Foundation. Polytechnic School of Health Joaquim Venâcio. Department of Endemic Diseases Samuel Pessoa. Rio de Janeiro, RJ, Brazil.State University of Rio de Janeiro - West Zone. Research Laboratory of Pharmaceutical Sciences. Rio de Janeiro, RJ, Brazil.Genetic polymorphisms may be involved with mercury levels and signs and symptoms of intoxication from this exposure. Therefore, the aims were to describe the frequency of the GSTP1 polymorphism and to evaluate its effects on mercury levels and neurological signs in three Munduruku indigenous villages in the Brazilian Amazon. One-hundred-and-seven indigenous (over 12 years old) were included and genotyped (rs1695) using a TaqMan validated assay. Then, associations were evaluated by binary logistic regression, using odds ratios (OR) and 95% confidence intervals (CI). Mean age was 27.4 ± 13.9 years old, 52.3% were male, mean hair mercury concentration was 8.5 ± 4.3, exceeding the reference limit (≥6.0 µg/g), and were different among the three villages: 13.5 ± 4.6 µg/g in Sawré Aboy, 7.4 ± 2.3 µg/g in Poxo Muybu and 6.9 ± 3.5 µg/g in Sawré Muybu. The minor allele frequency of GSTP1 G was significantly different among the villages: 57% Sawré Muybu, 21% Poxo Muybu and 15% Sawré Aboy. Finally, after adjustment, GSTP1 GG and GA genotypes were associated with lower levels of Hg (OR = 0.13; CI95% = 0.03–0.49) and abnormal somatosensory signs (OR = 3.7; 95%IC = 1.5–9.3), respectively. In conclusion, monitoring this population is imperative to identify individuals at higher risk of developing signs of chronic mercury exposure based on the genetic profile
    corecore