24 research outputs found

    Meeting of the Ecosystem Approach Correspondence Group on on Pollution Monitoring (CorMon Pollution)

    Get PDF
    In accordance with the UNEP/MAP Programme of Work adopted by COP 21 for the biennium 2020-2021, the United Nations Environment Programme/Mediterranean Action Plan-Barcelona Convention Secretariat (UNEP/MAP) and its Programme for the Assessment and Control of Marine Pollution in the Mediterranean (MED POL) organized the Meeting of the Ecosystem Approach Correspondence Group on Pollution Monitoring (CorMon on Pollution Monitoring). The Meeting was held via videoconference on 26-27 April 2021. 2. The main objectives of the Meeting were to: a) Review the Monitoring Guidelines/Protocols for IMAP Common Indicator 18, as well as the Monitoring Guidelines/Protocols for Analytical Quality Assurance and Reporting of Monitoring Data for IMAP Common Indicators 13, 14, 17, 18 and 20; b) Take stock of the state of play of inter-laboratory testing and good laboratory practice related to IMAP Ecological Objectives 5 and 9; c) Analyze the proposal for the integration and aggregation rules for IMAP Ecological Objectives 5, 9 and 10 and assessment criteria for contaminants and nutrients; d) Recommend the ways and means to strengthen implementation of IMAP Pollution Cluster towards preparation of the 2023 MED Quality Status Report

    Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    Get PDF

    Xanthan Gum Removal for 1H-NMR Analysis of the Intracellular Metabolome of the Bacteria Xanthomonas axonopodis pv. citri 306

    No full text
    Xanthomonas is a genus of phytopathogenic bacteria, which produces a slimy, polysaccharide matrix known as xanthan gum, which involves, protects and helps the bacteria during host colonization. Although broadly used as a stabilizer and thickener in the cosmetic and food industries, xanthan gum can be a troubling artifact in molecular investigations due to its rheological properties. In particular, a cross-reaction between reference compounds and the xanthan gum could compromise metabolic quantification by NMR spectroscopy. Aiming at an efficient gum extraction protocol, for a 1H-NMR-based metabolic profiling study of Xanthomonas, we tested four different interventions on the broadly used methanol-chloroform extraction protocol for the intracellular metabolic contents observation. Lower limits for bacterial pellet volumes for extraction were also probed, and a strategy is illustrated with an initial analysis of X. citri’s metabolism by 1H-NMR spectroscopy

    Kokua Mau:

    No full text

    Evaluating the soil moisture retrievals for agricultural drought monitoring over Brazil

    Get PDF
    A model for monitoring agricultural drought (SIMAGRI) has been developed in Brazil. This model is based on gridded precipitation product, real evapotranspiration calculated from vegetation index data (as proposed by [1]), and soil water storage. The soil water storage is derived from the estimation of field capacity and wilting point using pedo-transfer functions (PTFs). The SIMAGRI model suggest that the soil moisture influence is unquestionably a quantitative indicator of drought. In addition, using this model, it is possible to monitor drought episodes in agricultural regions of Brazil, especially over the Northeast, where vulnerability to drought is the highest in the country due to the prevalence of rain fed agricultural practice and frequent droughts

    Genetic and biochemical characterization of the MinC-FtsZ interaction in Bacillus subtilis.

    Get PDF
    Cell division in bacteria is regulated by proteins that interact with FtsZ and modulate its ability to polymerize into the Z ring structure. The best studied of these regulators is MinC, an inhibitor of FtsZ polymerization that plays a crucial role in the spatial control of Z ring formation. Recent work established that E. coli MinC interacts with two regions of FtsZ, the bottom face of the H10 helix and the extreme C-terminal peptide (CTP). Here we determined the binding site for MinC on Bacillus subtilis FtsZ. Selection of a library of FtsZ mutants for survival in the presence of Min overexpression resulted in the isolation of 13 Min-resistant mutants. Most of the substitutions that gave rise to Min resistance clustered around the H9 and H10 helices in the C-terminal domain of FtsZ. In addition, a mutation in the CTP of B. subtilis FtsZ also produced MinC resistance. Biochemical characterization of some of the mutant proteins showed that they exhibited normal polymerization properties but reduced interaction with MinC, as expected for binding site mutations. Thus, our study shows that the overall architecture of the MinC-FtsZ interaction is conserved in E. coli and B. subtilis. Nevertheless, there was a clear difference in the mutations that conferred Min resistance, with those in B. subtilis FtsZ pointing to the side of the molecule rather than to its polymerization interface. This observation suggests that the mechanism of Z ring inhibition by MinC differs in both species

    Early metabolic response after resistance exercise with blood flow restriction in well-trained men: a metabolomics approach

    No full text
    The present study aimed to compare the early metabolic response between high-load resistance exercise (HL-RE) and low-load resistance exercise with blood flow restriction (LL-BFR). Nine young well-trained men participated in a randomized crossover design in which each subject completed LL-BFR, HL-RE or condition control (no exercise) with a one-week interval between them. Blood samples were taken immediately before and five minutes after the exercise sessions. Nuclear magnetic resonance (NMR) spectroscopy identified and quantified 48 metabolites, six of which presented significant changes among the exercise protocols. The HL-RE promoted a higher increase in pyruvate, lactate and alanine compared to the LL-BFR and the control. HL-RE and LL-BFR promoted a higher increase in succinate compared to the control, however, there was no difference between HL-RE and LL-BFR. Also, while there was no difference in acetoacetate between HL-RE and LL-BFR, a greater decrease was observed in both compared to the control. Finally, LL-BFR promoted a greater decrease in choline compared to the control. In conclusion, this study provides by metabolomics a new insight in metabolic response between LL-BFR and HL-RE by demonstrating a distinct response to some metabolites that are not commonly analyzed.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ

    No full text
    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (NH)-N-15-H-2-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA
    corecore