141 research outputs found

    Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Chronic kidney disease (CKD) is a frequent, under-recognized condition and a risk factor for renal failure and cardiovascular disease. Increasing evidence connects non-alcoholic fatty liver disease (NAFLD) to CKD. We conducted a meta-analysis to determine whether the presence and severity of NAFLD are associated with the presence and severity of CKD.English and non-English articles from international online databases from 1980 through January 31, 2014 were searched. Observational studies assessing NAFLD by histology, imaging, or biochemistry and defining CKD as either estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 or proteinuria were included. Two reviewers extracted studies independently and in duplicate. Individual participant data (IPD) were solicited from all selected studies. Studies providing IPD were combined with studies providing only aggregate data with the two-stage method. Main outcomes were pooled using random-effects models. Sensitivity and subgroup analyses were used to explore sources of heterogeneity and the effect of potential confounders. The influences of age, whole-body/abdominal obesity, homeostasis model of insulin resistance (HOMA-IR), and duration of follow-up on effect estimates were assessed by meta-regression. Thirty-three studies (63,902 participants, 16 population-based and 17 hospital-based, 20 cross-sectional, and 13 longitudinal) were included. For 20 studies (61% of included studies, 11 cross-sectional and nine longitudinal, 29,282 participants), we obtained IPD. NAFLD was associated with an increased risk of prevalent (odds ratio [OR] 2.12, 95% CI 1.69-2.66) and incident (hazard ratio [HR] 1.79, 95% CI 1.65-1.95) CKD. Non-alcoholic steatohepatitis (NASH) was associated with a higher prevalence (OR 2.53, 95% CI 1.58-4.05) and incidence (HR 2.12, 95% CI 1.42-3.17) of CKD than simple steatosis. Advanced fibrosis was associated with a higher prevalence (OR 5.20, 95% CI 3.14-8.61) and incidence (HR 3.29, 95% CI 2.30-4.71) of CKD than non-advanced fibrosis. In all analyses, the magnitude and direction of effects remained unaffected by diabetes status, after adjustment for other risk factors, and in other subgroup and meta-regression analyses. In cross-sectional and longitudinal studies, the severity of NAFLD was positively associated with CKD stages. Limitations of analysis are the relatively small size of studies utilizing liver histology and the suboptimal sensitivity of ultrasound and biochemistry for NAFLD detection in population-based studies.The presence and severity of NAFLD are associated with an increased risk and severity of CKD. Please see later in the article for the Editors' Summary.Italian Ministry of University/FIRB/MERIT RBNE08NKH7_00

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease.Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations.Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake.Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.</p

    Association of Adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease

    Get PDF
    BACKGROUND & AIMS : The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the obesity pandemic. We analyzed the transcriptional profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), and phenotypes and functional characteristics of adipocyte tissue macrophages (ATMs), in obese patients undergoing bariatric surgery. METHODS : We collected anthropometric data; plasma samples; and SAT, VAT, and liver tissues from 113 obese patients undergoing bariatric surgery at academic hospitals in Europe (Antwerp and Leuven) and South Africa. Based on clinical and histologic features, patients were assigned to the following groups: obese, NAFLD, nonalcoholic steatohepatitis (NASH), or NASH with fibrosis. Microarray analyses were performed to identify genes expressed differentially among groups. We measured levels of cytokines and chemokines in plasma samples and levels of RNAs in adipose tissues by quantitative reverse-transcription polymerase chain reaction. ATMs were isolated from patients and 13 lean individuals undergoing cholecystectomy (controls), analyzed by flow cytometry, and cultured; immunophenotypes and levels of cytokines and chemokines in supernatants were determined. RESULTS : We observed increased expression of genes that regulate inflammation in adipose tissues from patients with NAFLD and NASH; expression of these genes increased as disease progressed from NAFLD to NASH. We found 111 genes associated with inflammation that were expressed differentially between VAT and SAT. Serum levels of interleukin 8, chemokine (C-C motif) ligand 3, and tumor necrosis factor-a correlated with liver inflammation and NAFLD activity score. We developed 2 models that could be used to determine patients’ liver histology based on gene expression in VAT and SAT. Flow cytometry showed increased proportions of CD11cþCD206þ and CCR2þ macrophages in VAT from patients with NASH, and supernatants of cultured macrophages had increased levels of cytokines and chemokines compared with controls. CONCLUSIONS : VAT and SAT from patients with NAFLD and NASH have an increased expression of genes that regulate inflammation, and ATM produce increased levels of inflammatory cytokines, compared with adipose tissues from controls. We identified an expression profile of 5 genes in SAT that accurately predict liver histology in these patients. Transcript profiling: accession numbers: GSE58979 and GSE59045.Schalk van der Merwe, Chantal Mathieu, Frederik Nevens, David Cassiman, and Sven Francque are recipients of the Flanders fund for scientific research (FWO klinisch mandaat), and Hannelie Korf is a recipient of the FWO postdoctoral mandate. Research at the Department of Endocrinology, Diabetology and Metabolism and the Department of Gastroenterology and Hepatology of the Antwerp University Hospital (Belgium) was supported by the European Union: FP6 (HEPADIP contract LSHM-CT-2005-018734) and FP7-HEALTH (RESOLVE no. 305707). Supported by a fellowship from the South African Gastroenterology Association and a scholarship from the European Association for the Study of the Liver (J.d.P.). This research also was supported by a research grant from the Gastro foundation of South Africa. The authors specifically acknowledge the support of Dr. Chris Kassianides. Also funded in part by a grant from the Deutsche Forschungsgemeinschaft DFG-SFB 1052/1: Obesity Mechanisms (projects A04) and by the Helmholtz Alliance Imaging and Curing Environmental Metabolic Disease through the Initiative and Networking Fund of the Helmholtz Association (M.G.).http://www.journals.elsevier.com/gastroenterology2016-09-30hb2016Internal Medicin
    corecore