7,324 research outputs found

    Edge States and Quantum Hall Effect in Graphene under a Modulated Magnetic Field

    Full text link
    Graphene properties can be manipulated by a periodic potential. Based on the tight-binding model, we study graphene under a one-dimensional (1D) modulated magnetic field which contains both a uniform and a staggered component. New chiral current-carrying edge states are generated at the interfaces where the staggered component changes direction. These edge states lead to an unusual integer quantum Hall effect (QHE) in graphene, which can be observed experimentally by a standard four-terminal Hall measurement. When Zeeman spin splitting is considered, a novel state is predicted where the electron edge currents with opposite polarization propagate in the opposite directions at one sample boundary, whereas propagate in the same directions at the other sample boundary.Comment: 5 pages, 4 figure

    Ceramic Sensors for Wireless High-Temperature Sensing

    Get PDF
    A RF resonator for sensing a physical or environmental parameter includes a substrate having a substrate surface. A polymer-derived ceramic (PDC) element is positioned on or within the substrate surface. The RF resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessely sensing at least one physical or environmental parameter includes at least one RF resonator and a wireless RF reader located remotely from the RF resonator first transmitting a wide-band RF interrogation signal that excites the RF resonator. The wireless RF reader detects a sensing signal retransmitted by the RF resonator and includes a processor for determining the physical or environmental parameter at the location of the RF resonator from the sensing signal

    Generating Many Majorana Modes via Periodic Driving: A Superconductor Model

    Full text link
    Realizing Majorana modes (MMs) in condensed-matter systems is of vast experimental and theoretical interests, and some signatures of MMs have been measured already. To facilitate future experimental observations and to explore further applications of MMs, generating many MMs at ease in an experimentally accessible manner has become one important issue. This task is achieved here in a one-dimensional pp-wave superconductor system with the nearest- and next-nearest-neighbor interactions. In particular, a periodic modulation of some system parameters can induce an effective long-range interaction (as suggested by the Baker-Campbell-Hausdorff formula) and may recover time-reversal symmetry already broken in undriven cases. By exploiting these two independent mechanisms at once we have established a general method in generating many Floquet MMs via periodic driving.Comment: 5 pages, 3 figures. To appear in Phys. Rev. B as a Rapid Communicatio
    corecore