7,160 research outputs found

    Action detection in office scene based on deep convolutional neural networks

    Get PDF

    Structural basis of functions of the mitochondrial cytochrome bc1 complex

    Get PDF
    AbstractThe crystal structure of the cytochrome bc1 complex (ubiquinol-cytochrome c reductase) from bovine heart submitochondria was determined at 2.9 Å resolution. The bc1 complex in crystal exists as a closely interacting dimer, suggesting that the dimer is a functional unit. Over half of the mass of the complex, including subunits core 1 and core 2, are on the matrix side of the membrane, while most of the cytochrome b subunit is located within the membrane. There are 13 transmembrane helices in each monomer, eight of them belonging to cytochrome b. Two large cavities are made of the transmembrane helices D, C, F and H in one monomer and helices D′ and E′ from the other monomer of cytochrome b, and the transmembrane helices of c1, iron-sulfur protein (ISP), and subunits 10 and 11. These cavities provide entrances for ubiquinone or inhibitor and connect the Qi pocket of one monomer and the Qo pocket of the other monomer. Ubiquinol made at the Qi site of one monomer can proceed to the nearby Qo site of the other monomer without having to leave the bc1 complex. The soluble parts of cytochrome c1 and ISP, including their redox prosthetic groups, are located on the cytoplasmic side of the membrane. The distances between the four redox centers in the complex have been determined, and the binding sites for several electron transfer inhibitors have been located. Structural analysis of the protein/inhibitor complexes revealed that the extramembrane domain of the Rieske iron-sulfur protein may undergo substantial movement during the catalytic cycle of the complex. The Rieske protein movement and the larger than expected distance between FeS and cytochrome c1 heme suggest that electron transfer reaction between FeS and cytochrome c1 may involve movements or conformational changes in the soluble domain of iron-sulfur protein. The inhibitory function of E-β-methoxyacrylate-stilbene and myxothiazol may result from the increase of mobility in ISP, whereas the function of stigmatellin and 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole may result from the immobilization of ISP

    Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice

    Get PDF
    This study was carried out to evaluate the protective effect of anthocyanins extract of blueberry on trinitrobenzene sulfonic acid (TNBS)-induced inflammatory bowel disease (IBD) model of mice. The study employed female C57BL/6 mice (n = 50), and colitis was induced by intracolonic injection of 0.5 mg of TNBS dissolved in 50% ethanol–phosphate buffered solution. The mice were divided into five groups (n = 10): vehicle, TNBS control and anthocyanins groups that received different doses of anthocyanins extract (10, 20 and 40 mg kg−1) daily for 6 days. Both increase in body weight and diarrhea symptoms were monitored each day. After 6 days, the animals were killed, and the following parameters were assessed: colon length, morphological score, histological score and biochemical assay (NO, myeloperoxidase (MPO), interleukin (IL)-12, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ). The results showed that the anthocyanins extract of blueberry rendered strong protection against TNBS-induced colonic damage at a dosage of 40 mg kg−1. When compared with the control, anthocyanins extract significantly prevented loss of body weight and ameliorated the scores of diarrhea, morphology and histology. Treatment with anthocyanins extract restored IL-10 excretion, as well as caused reduction in the levels of NO, MPO, IL-12, TNF-α and IFN-γ. Our research revealed the protective effect of anthocyanins extract from blueberry on TNBS-induced experimental colitis in mice, as well as examined whether high levels of dietary blueberries would lower the risk or have protective effects on human IBD, which may require further investigation

    LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn’s disease

    Full text link

    Comprehensive Circular RNA Profiling Reveals the Regulatory Role of the CircRNA-0067835/miR-155 Pathway in Temporal Lobe Epilepsy

    Get PDF
    Background/Aims: Temporal lobe epilepsy (TLE) is the most common form of adult localization-related epilepsy that is accompanied by progressive etiopathology and high incidences of drug resistance. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression, however, the expression profile and clinical significance of circRNAs in TLE remains unknown. Methods: Circular RNA microarray was conducted to identify TLE-related circRNAs. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in TLE in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in TLE cell. Results: 586 differentially expressed circRNAs were identified between TLE and the control tissues. The expression of circRNA-0067835 was significantly down-regulated in tissues and plasma from TLE patients. Lower circRNA-0067835 correlated to increased seizure frequency, HS, and higher Engel’s score. Overexpression of circRNA-0067835 observably decreased SH-SY5Y cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated refractory epilepsy progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with TLE
    corecore