170 research outputs found
Calculation of Carrier Doping-Induced Half-Metallicity, and Transformation of Easy Axis in Two-Dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) Monolayers
We study the stability, electrical properties, and magnetic properties of
MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers based on the density functional
theory.Comment: 10 figure
The Dynamic Model Embed in Augmented Graph Cuts for Robust Hand Tracking and Segmentation in Videos
Segmenting human hand is important in computer vision applications, for example, sign language interpretation, human computer interaction, and gesture recognition. However, some serious bottlenecks still exist in hand localization systems such as fast hand motion capture, hand over face, and hand occlusions on which we focus in this paper. We present a novel method for hand tracking and segmentation based on augmented graph cuts and dynamic model. First, an effective dynamic model for state estimation is generated, which correctly predicts the location of hands probably having fast motion or shape deformations. Second, new energy terms are brought into the energy function to develop augmented graph cuts based on some cues, namely, spatial information, hand motion, and chamfer distance. The proposed method successfully achieves hand segmentation even though the hand passes over other skin-colored objects. Some challenging videos are provided in the case of hand over face, hand occlusions, dynamic background, and fast motion. Experimental results demonstrate that the proposed method is much more accurate than other graph cuts-based methods for hand tracking and segmentation
The associations of CNR1 SNPs and haplotypes with vulnerability and treatment response phenotypes in Han Chinese with major depressive disorder:A case-control association study
BACKGROUND: Understanding how genetic polymorphisms are associated with the pathophysiology of major depressive disorder (MDD) may aid in diagnosis and the development of personalized treatment strategies. CNR1 is the gene coding Cannabinoid type 1 receptor which is highly involved in emotional processing and in regulating neurotransmitter releases. We aimed to investigate the associations of CNR1 single‐nucleotide polymorphisms (SNPs) with MDD susceptibility and treatment response. METHODS: The study reported data on 181 Han Chinese with MDD and 80 healthy controls. The associations of CNR1 genetic polymorphisms with MDD susceptibility and treatment response were examined, wherein the MDD patients were subgrouped further by responding to antidepressant treatment, compared with healthy controls separately. RESULTS: The CNR1 SNPs rs806367 and rs6454674 and haplotype C‐T‐T‐C of rs806366, rs806367, rs806368, and rs806370 were associated with increased susceptibility for MDD and antidepressant treatment resistance, but the association was not detected in other SNPs or the haplotype block of rs806368 and rs806370. CONCLUSION: The CNR1 is a promising candidate for the genetic association study of MDD. Larger and well‐characterized samples are required to confirm the genetic association of CNR1 with MDD because of the limitations such as relatively small sample size and lack of information for correcting confounding factors
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
The transformation pathways of carbon at high pressures are of broad interest for synthesis of novel materials and for revealing the Earth's geological history. We have applied large plastic shear on graphite in a rotational anvil cell to form hexagonal diamond and nanocrystalline cubic diamond at extremely low pressures of 0.4 and 0.7 GPa, which are 50 and 100 times lower than the transformation pressures under hydrostatic compression and well below the phase equilibrium. Large shearing accompanied with pressure elevation to 3 GPa also leads to formation of a new orthorhombic diamond phase. Our results demonstrate new mechanisms and new means for plastic shear-controlled material synthesis at drastically reduced pressures, enabling new technologies for material synthesis. The result also has significant geological implications
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
The transformation pathways of carbon at high pressures are of broad interest
for synthesis of novel materials and for revealing the Earth's geological
history. We have applied large plastic shear on graphite in rotational anvils
to form hexagonal and nanocrystalline cubic diamond at extremely low pressures
of 0.4 and 0.7 GPa, which are 50 and 100 times lower than the transformation
pressures under hydrostatic compression and well below the phase equilibrium.
Large shearing accompanied with pressure elevation to 3 GPa also leads to
formation of a new orthorhombic diamond phase. Our results demonstrate new
mechanisms and new means for plastic shear-controlled material synthesis at
drastically reduced pressures, enabling new technologies for material
synthesis. The results indicate that the micro-diamonds found in the low
pressure-temperature crust could have formed during a large shear producing
event, such as tectonic rifting and continued plate collision, without the need
to postulate subduction to the mantle.Comment: 15 pages, 6 figures, 3 table
Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid
Carnosic acid (CA) is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS) and retinoic acid (RA). In addition, CA blocked the release of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) from RAW264.7 cells activated by the toll-like receptor (TLR)-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN) and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS). CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF)-κB and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K), Akt, inhibitor of κBα (IκBα) kinase (IKK), and IκBα for NF-κB activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-κB inhibitory properties
Shear driven formation of nano-diamonds at sub-gigapascals and 300 K
The transformation pathways of carbon at high pressures are of broad interest for synthesis of novel materials and for revealing the Earth's geological history. We have applied large plastic shear on graphite in a rotational anvil cell to form hexagonal diamond and nanocrystalline cubic diamond at extremely low pressures of 0.4 and 0.7 GPa, which are 50 and 100 times lower than the transformation pressures under hydrostatic compression and well below the phase equilibrium. Large shearing accompanied with pressure elevation to 3 GPa also leads to formation of a new orthorhombic diamond phase. Our results demonstrate new mechanisms and new means for plastic shear-controlled material synthesis at drastically reduced pressures, enabling new technologies for material synthesis. The result also has significant geological implications
Integrated analysis of the lncRNA-miRNA-mRNA network based on competing endogenous RNA in atrial fibrillation
ObjectiveLong non-coding RNAs (lncRNAs) play pivotal roles in the transcriptional regulation of atrial fibrillation (AF) by acting as competing endogenous RNAs (ceRNAs). In the present study, the expression levels of lncRNAs of sinus rhythm (SR) patients and AF patients were investigated with transcriptomics technology, and the lncRNA-miRNA-mRNA network based on the ceRNA theory in AF was elaborated.MethodsLeft atrial appendage (LAA) tissues were obtained from patients with valvular heart disease during cardiac surgery, and they were divided into SR and AF groups. The expression characterizations of differentially expressed (DE) lncRNAs in the two groups were revealed by high-throughput sequencing methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the lncRNA-miRNA-mRNA-mediated ceRNA network was constructed.ResultsA total of differentially expressed 82 lncRNAs, 18 miRNAs, and 495 mRNAs in human atrial appendage tissues were targeted. Compared to SR patients, the following changes were found in AF patients: 32 upregulated and 50 downregulated lncRNAs; 7 upregulated and 11 downregulated miRNAs; and 408 upregulated and 87 downregulated mRNAs. A lncRNA-miRNA-mRNA network was constructed, which included 44 lncRNAs, 18 miRNAs, and 347 mRNAs. qRT-PCR was performed to verify these findings. GO and KEGG analyses suggested that inflammatory response, chemokine signaling pathway, and other biological processes play important roles in the pathogenesis of AF. Network analysis based on the ceRNA theory identified that lncRNA XR_001750763.2 and Toll-like receptor 2 (TLR2) compete for binding to miR-302b-3p. In AF patients, lncRNA XR_001750763.2 and TLR2 were upregulated, and miR-302b-3p was downregulated.ConclusionWe identified a lncRNA XR_001750763.2/miR-302b-3p/TLR2 network based on the ceRNA theory in AF. The present study shed light on the physiological functions of lncRNAs and provided information for exploring potential treatments for AF
- …