80 research outputs found

    Towards an Advanced Linear International Collider

    Get PDF
    This document provides detailed information on the status of Advanced and Novel Accelerators techniques and describes the steps that need to be envisaged for their implementation in future accelerators, in particular for high energy physics applications. It complements the overview prepared for the update of the European Strategy for particle physics, and provides a detailed description of the field. The scientific priorities of the community are described for each technique of acceleration able to achieve accelerating gradient in the GeV range or above. ALEGRO working group leaders have coordinated the preparation of their working group contribution and contributed to editing the documents. The preparation of this document was coordinated by the Advanced LinEar collider study GROup, ALEGRO. The content was defined through discussions at the ALEGRO workshop in Oxford UK, March 2018, and an advanced draft was discussed during a one day meeting prior to the AAC workshop in Breckenridge, CO, USA, August 2018. This document was submitted as an addendum to the ALEGRO submission1 to the European Strategy for Particle Physics

    Carbon in Chinese grasslands : meta-analysis and theory of grazing effects

    Get PDF
    Unidad de excelencia María de Maeztu CEX2019-000940-MGlobally, livestock grazing is an important management factor influencing soil degradation, soil health and carbon (C) stocks of grassland ecosystems. However, the effects of grassland types, grazing intensity and grazing duration on C stocks are unclear across large geographic scales. To provide a more comprehensive assessment of how grazing drives ecosystem C stocks in grasslands, we compiled and analyzed data from 306 studies featuring four grassland types across China: desert steppes, typical steppes, meadow steppes and alpine steppes. Light grazing was the best management practice for desert steppes (< 2 sheep ha−1) and typical steppes (3 to 4 sheep ha−1), whereas medium grazing pressure was optimal for meadow steppes (5 to 6 sheep ha−1) and alpine steppes (7 to 8 sheep ha−1) leading to the highest ecosystem C stocks under grazing. Plant biomass (desert steppes) and soil C stocks (meadow steppes) increased under light or medium grazing, confirming the 'intermediate disturbance hypothesis'. Heavy grazing decreased all C stocks regardless of grassland ecosystem types, approximately 1.4 Mg ha−1 per year for the whole ecosystem. The regrowth and regeneration of grasslands in response to grazing intensity (i.e., grazing optimization) depended on grassland types and grazing duration. In conclusion, grassland grazing is a double-edged sword. On the one hand, proper management (light or medium grazing) can maintain and even increase C stocks above- and belowground, and increase the harvested livestock products from grasslands. On the other hand, human-induced overgrazing can lead to rapid degradation of vegetation and soils, resulting in significant carbon loss and requiring long-term recovery. Grazing regimes (i.e., intensity and duration applied) must consider specific grassland characteristics to ensure stable productivity rates and optimal impacts on ecosystem C stocks
    • …
    corecore