80 research outputs found

    A comparative study of autotrophic and heterotrophic denitrification using sulphide and acetate

    Get PDF
    Sulphide containing streams must be treated before releases to environment due to the toxicity, corrosivity and unpleasant odour of sulphide. Anaerobic chemolithotrophic desulphurization under denitrifying conditions is the preferred process when compared with others like physicochemical processes, photoautotrophic and aerobic chemolithotrophic desulphurizations as the catalysts, high pressure, high temperature, light energy and oxygen are not needed. Another main advantage of this process is that the denitrification can be achieved with desulphurization simultaneously. In this work, the anaerobic chemolithotrophic desulphurization under denitrifying conditions (autotrophic denitrification) and heterotrophic denitrification processes were studied. Desulphurization under denitrifying conditions was studied in continuous stirred tank bioreactors (CSTB), while batch, continuous stirred tank and biofilm reactors were used to investigate the heterotrophic denitrification. The kinetics of desulphurization, autotrophic and heterotrophic denitrifications obtained in different systems and under various conditions were compared. Using three different feed sulphide concentrations in the range 10-20 mM, a linear relationship between sulphide loading rates and sulphide removal rates was observed in continuous stirred tank reactors, regardless of initial sulphide concentration. The highest sulphide removal rate of 1.79 mM h-1 was obtained in CSTB fed with 15 mM sulphide. In these systems cell washout occurred at lower dilution rates as sulphide concentration in the feed was increased from 10 to 20 mM. The ratio of sulphide to nitrate loading rates influenced the composition of the sulphur oxidation end products where higher ratios favored the formation of elemental sulphur and lower ratios promoted the formation of sulphate. In the batch system initial concentration of nitrate (5 to 50 mM) did not have a notable effect on denitrification process. Nitrate was converted to nitrite first and the produced nitrite was then converted to other gaseous end products such as nitrogen. Increases of temperature in the range of 15 to 35ºC increased the bacterial growth rate significantly with the value of apparent activation energy for specific growth rate being 60.6 kJ mol-1. Using the experimental data generated in two continuous bioreactors operated with feeds containing 10 and 30 mM nitrate biokinetic coefficients for heterotrophic denitrification were determined. The values of µm, Ks, ms, YMX/S, kd for initial nitrate concentrations of 10 and 30 mM were 0.087 and 0.082 h-1, 2.01 and 5.27 mM (NO3-), 1.441 and 1.096 mM (NO3-) (g biomass) -1 h-1, 0.011 and 0.013 g (biomass) (mM NO3-)-1, and 0.016 and 0.014 h-1 respectively. In the biofilm system the linear relationship between nitrate loading rate and nitrate removal rate was observed again for the whole range of tested nitrate loading rate range (up to 183 mM h-1), regardless of the approach used to increase the loading rate (increases in feed flow rate or feed nitrate concentration). The highest nitrate removal rate was 183 mM h-1 which was around 194 times higher than that achieved in the continuous stirred tank bioreactor with free cells. A comparison of the autotrophic and heterotrophic denitrification processes studied in the CSTB system indicated that in case of autotrophic denitrification wash-out occurred suddenly and at a much lower loading rate of 0.75 to 0.96 mM (NO3-) h-1 for initial sulphide concentrations 10 to 20 mM, while in case of heterotrophic denitrification increase of nitrate loading rate did not have such a drastic effect and removal rate of nitrate decreased slowly with the increases of nitrate loading rate. A comparison of the kinetic data obtained in the biofilm reactor in the present work and those generated for autotrophic denitrification in an earlier work conducted at University of Saskatchewan (Tang, 2008) showed that the dependency of nitrate removal rate on its loading rate were linear in either case and somewhat similar. However, the maximum nitrate removal rate obtained in the heterotrophic system (183 mM h-1) was much higher than that obtained in the autotrophic system with sulphide

    Qwen Technical Report

    Full text link
    Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.Comment: 59 pages, 5 figure

    Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices

    Get PDF
    Funding Information: This work was supported by the European Commission (H2020, 1D-NEON, grant agreement ID: 685758). J.M.K. and L.G.O. acknowledge the support from the U.K. Research and Innovation (EPSRC, EP/P027628/1). We thank Y. Bernstein and J. Faulkner for helping with grammar check. Funding Information: Acknowledgments Funding:ThisworkwassupportedbytheEuropeanCommission(H2020,1D-NEON,grant agreementID:685758).J.M.K.andL.G.O.acknowledgethesupportfromtheU.K.Researchand Innovation(EPSRC,EP/P027628/1).W ethankY .BernsteinandJ.Faulknerforhelpingwith grammarcheck.Authorcontributions:S.L.andJ.M.K.conceivedtheproject.S.L.,L.G.O.,P .B., R.Martins,andJ.M.K.supervisedtheproject.S.L.andH.L.developedF-PD.S.L.,Y .-W .L., G.-H.A., D.-W .S., J.I.S.,andS.C.developedF-SC.C.L.F ., A.S.,R.I.,P .B., andR.Martinsdevelopedfiber transistor.S.L.,H.L.,andS.C.developedF-LED.ThefiberdeviceswereevaluatedbyS.L.,H.W .C., D.-W .S., H.L.,S.J.,S.D.H.,S.Y .B., S.Z.,W .H.-C., Y .-H.S., X.-B.F ., T .H.L., J.-W .J., andY .K. The developmentofweavingprocesswasconductedbyS.L.,H.W .C., F .M.M., P .J., andV .G.C. Thelaser interconnectionwasdevelopedbyS.L.,H.W .C., K.U.,M.E.,andM.S.Thetextiledemonstrations werecharacterizedbyS.L.,H.W .C., D.-W .S., J.Y ., S.S.,U.E.,S.N.,A.C.,A.M.,R.Momentè,J.G.,N.D., S.M.,C.-H.K.,M.L.,A.N.,D.J.,M.C.,andY .C. ThismanuscriptwaswrittenbyS.L.andJ.M.K.and reviewed by H.W .C., D.-W .S., M.C.,L.G.O., P .B., E.F ., and G.A.J.A. All authors discussed the results andcommentedonthemanuscript.Competinginterests:Theauthorsdeclarethattheyhave nocompetinginterests.Dataandmaterialsavailability:Alldataneededtoevaluatethe conclusionsinthepaperarepresentinthepaperand/ortheSupplementaryMaterials. Publisher Copyright: Copyright © 2023 The Authors, some rights reserved.An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.publishersversionpublishe

    Simulation of photoexcitation dynamics in conjugated polymer using Ehrenfest method with configuration interaction singles

    No full text
    Ehrenfest method is commonly used for simulating photoexcitation dynamics in conjugated polymers. However, due to the expensive computational cost, the calculation of electronic excited states for long conjugated polymer chains in Ehrenfest simulations is still at the level of Hartree–Fock approximation. Here, we develop an approach to perform Ehrenfest simulations in terms of configuration interaction singles (CIS) that is beyond the Hartree–Fock approximation. With this approach, we simulate the relaxations of various photoinduced excited states in a single polymer chain. The simulations show that the photoinduced excited states relax to a mixed state very fast, in which the lowest excited state is dominated.In the excited-state relaxation processes, the electron and hole are not separated. We have also studied the exciton dissociation by external electric field, and find that the critical electric field to dissociate the exciton is much lower than that calculated by previous Ehrenfest simulations in terms of low-level excited-state calculations

    Exploring interchain polaron pair formation in neat conjugated polymers

    No full text
    We present theoretical studies to explore interchain polaron pair (PP) formation in conjugated polymers. Based on the Pariser-Parr-Pople (PPP) Hamiltonian combined with the configuration interaction singles (CIS), we perform excited-state geometry optimization on a poly-p-phenylenevinylene (PPV) dimer, and identify interchain PPs in this system by analyzing the real-space distributions of electron and hole in different excited states. We find that interchain PP states can not form in highly symmetric cofacial PPV-dimer, but can form in this PPV-dimer when applying an external electric field, rotating one of two chains, or doping an impurity. Considering that highly symmetric systems are hardly present in real polymer films, PPs should commonly exist as high-lying excited states of real polymer systems

    Review on the Application and Development of Biochar in Ironmaking Production

    No full text
    In recent years, the concept of green, low-carbon and clean energy consumption has been deeply rooted in the hearts of the people, and countries have actively advocated the use of new energy. In the face of problems such as resource shortage and environmental pollution, we began to explore the use of new fuels instead of coal for production. Biomass resources have the characteristics of being renewable and carbon neutral and having large output. As an energy utilization, it is helpful to promote the transformation of the energy structure in various countries. Applying it to ironmaking production is not only conducive to energy conservation and emission reduction in the ironmaking process but also can achieve efficient utilization of crop waste. By introducing the source and main preparation methods of biochar, this paper expounds the main links and advantages of biochar in the ironmaking process and puts forward the direction of biochar in ironmaking in the future
    corecore