1 research outputs found

    Development of a Coherent Doppler Lidar for Precision Maneuvering and Landing of Space Vehicles

    Get PDF
    A coherent Doppler lidar has been developed to address NASAs need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to planetary bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar, meets the required performance of landing missions while complying with vehicle size, mass, and power constraints. Operating from over five kilometers altitude, the lidar obtains velocity and range precision measurements with 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. After a series of flight tests onboard helicopters and rocket-powered free-flyer vehicles, the Navigation Doppler Lidar is now being ruggedized for future missions to various destinations in the solar system
    corecore