1 research outputs found

    Automated Affinity Capture and On-Tip Digestion to Accurately Quantitate <i>in Vivo</i> Deamidation of Therapeutic Antibodies

    No full text
    Deamidation of therapeutic antibodies may result in decreased drug activity and undesirable changes in pharmacokinetics and immunogenicity. Therefore, it is necessary to monitor the deamidation levels [during storage] and after <i>in vivo</i> administration. Because of the complexity of <i>in vivo</i> samples, immuno-affinity capture is widely used for specific enrichment of the target antibody prior to LC–MS. However, the conventional use of bead-based methods requires large sample volumes and extensive processing steps. Furthermore, with automation difficulties and extended sample preparation time, bead-based approaches may increase artificial deamidation. To overcome these challenges, we developed an automated platform to perform tip-based affinity capture of antibodies from complex matrixes with rapid digestion and peptide elution into 96-well microtiter plates followed by LC–MS analysis. Detailed analyses showed that the new method presents high repeatability and reproducibility with both intra and inter assay CVs < 8%. Using the automated platform, we successfully quantified the levels of deamidation of a humanized monoclonal antibody in cynomolgus monkeys over a time period of 12 weeks after administration. Moreover, we found that deamidation kinetics between <i>in vivo</i> samples and samples stressed <i>in vitro</i> at neutral pH were consistent, suggesting that the <i>in vitro</i> stress test may be used as a method to predict the liability to deamidation of therapeutic antibodies <i>in vivo</i>
    corecore