15 research outputs found

    An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth Through Covariation

    No full text
    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks and activities developed to engender a view of exponential growth as a relation between two continuously covarying quantities. Developed out of two teaching experiments with early adolescents, the EGLT identifies three major stages of students' conceptual development: prefunctional reasoning, the covariation view, and the correspondence view. The learning trajectory is presented along with three individual students' progressions through the trajectory as a way to illustrate the variation present in how the participants made sense of ideas about exponential growth

    Quantifying exponential growth: Three conceptual shifts in coordinating multiplicative and additive growth

    No full text
    This article presents the results of a teaching experiment with middle school students who explored exponential growth by reasoning with the quantities height (y) and time (x) as they explored the growth of a plant. Three major conceptual shifts occurred during the course of the teaching experiment: (1) from repeated multiplication to initial coordination of multiplicative growth in y with additive growth in x; (2) from coordinating growth in y with growth in x to coordinated constant ratios (determining the ratio of f(x(2)) to f(x(1)) for corresponding intervals of time for (x(2)) > 1), and (3) from coordinated constant ratios to within-units coordination for corresponding intervals of time for (x(2)) < 1. Each of the three shifts is explored along with a discussion of the ways in which students' mathematical activity supported movement from one stage of understanding to the next. These findings suggest that emphasizing a coordination of multiplicative and additive growth for exponentiation may support students' abilities to flexibly move between the covariation and correspondence views of function. (C) 2015 Elsevier Inc. All rights reserved
    corecore