2 research outputs found

    Measurement of 10 fs pulses across the entire Visible to Near-Infrared Spectral Range

    Get PDF
    Tuneable ultrafast laser pulses are a powerful tool for measuring difficult-to-access degrees of freedom in materials science. In general these experiments require the ability to address resonances and excitations both above and below the bandgap of materials, and to probe their response at the timescale of the fastest non-trivial internal dynamics. This drives the need for ultrafast sources capable of delivering 10-15 fs duration pulses tuneable across the entire visible (VIS) and near infrared (NIR) range, 500 nm - 3000 nm, as well as the characterization of these sources. Here we present a single frequency-resolved optical gating (FROG) system capable of self-referenced characterization of pulses with 10 fs duration across the entire VIS-NIR spectral range. Our system does not require auxiliary beams and only minor reconfiguration for different wavelengths. We demonstrate the system with measurements of pulses across the entire tuning range

    Investigation of spatiotemporal output beam profile instabilities from differentially pumped capillaries

    No full text
    Differentially pumped capillaries, i.e., capillaries operated in a pressure gradient environment, are widely used for nonlinear pulse compression. In this work, we show that strong pressure gradients and high gas throughputs can cause spatiotemporal instabilities of the output beam profile. The instabilities occur with a sudden onset as the flow evolves from laminar to turbulent. Based on the experimental and numerical results, we derive guidelines to predict the onset of those instabilities and discuss possible applications in the context of nonlinear flow dynamics
    corecore