4 research outputs found

    Kisspeptin Prevention of Amyloid-β Peptide Neurotoxicity <i>in Vitro</i>

    No full text
    Alzheimer’s disease (AD) onset is associated with changes in hypothalamic-pituitary–gonadal (HPG) function. The 54 amino acid kisspeptin (KP) peptide regulates the HPG axis and alters antioxidant enzyme expression. The Alzheimer’s amyloid-β (Aβ) is neurotoxic, and this action can be prevented by the antioxidant enzyme catalase. Here, we examined the effects of KP peptides on the neurotoxicity of Aβ, prion protein (PrP), and amylin (IAPP) peptides. The Aβ, PrP, and IAPP peptides stimulated the release of KP and KP 45–54. The KP peptides inhibited the neurotoxicity of Aβ, PrP, and IAPP peptides, via an action that could not be blocked by kisspeptin-receptor (GPR-54) or neuropeptide FF (NPFF) receptor antagonists. Knockdown of KiSS-1 gene, which encodes the KP peptides, in human neuronal SH-SY5Y cells with siRNA enhanced the toxicity of amyloid peptides, while KiSS-1 overexpression was neuroprotective. A comparison of the catalase and KP sequences identified a similarity between KP residues 42–51 and the region of catalase that binds Aβ. The KP peptides containing residues 45–50 bound Aβ, PrP, and IAPP, inhibited Congo red binding, and were neuroprotective. These results suggest that KP peptides are neuroprotective against Aβ, IAPP, and PrP peptides via a receptor independent action involving direct binding to the amyloid peptides

    Immunocytochemical staining of endogenous nuclear proteins with the HIS-1 anti-poly-histidine monoclonal antibody: A potential source of error in His-tagged protein detection

    No full text
    Histidine-tagged proteins are widely used in biochemical studies and frequently detected with antibodies specific for the histidine tag. Immunocytochemistry is widely used in studies with overexpressed proteins to determine cellular localization and in the case of histidine-tagged proteins can be carried out with anti-polyhistidine antibodies. Recent studies have suggested that polyhistidine sequences are present within a small number of human proteins and may direct expression to the nucleus and nuclear speckles compartments of the cell. In this study immunocytochemical staining of human SH-SY5Y neuroblastoma cell lines with the HIS-1 anti-polyhistidine monoclonal antibody were determined. Results showed that the HIS-1 anti-polyhistidine monoclonal antibody stained endogenous nuclear proteins in SH-SY5Y cells. The stained proteins were contained within the nuclear membrane, but were not directly linked to DNA. In a histidine-tagged catalase overexpressing cell line the HIS-1 anti-polyhistidine monoclonal antibody showed nuclear staining, whilst staining with the CAT-505 anti-catalase monoclonal antibody showed primarily cytoplasmic staining. These results suggest that anti-polyhistidine antibody staining shows significant cross-reactivity with endogenous nuclear proteins in SH-SY5Y neuroblastoma cells and may not be suitable for localization studies of histidine-tagged proteins. Immunocytochemical studies with anti-polyhistidine antibodies and localization of histidine-tagged proteins must be confirmed with protein specific antibodies or other methodology

    Benzothiazole Aniline Tetra(ethylene glycol) and 3-Amino-1,2,4-triazole Inhibit Neuroprotection against Amyloid Peptides by Catalase Overexpression in Vitro

    No full text
    Alzheimer’s disease, Familial British dementia, Familial Danish dementia, Type 2 diabetes mellitus, plus Creutzfeldt-Jakob disease are associated with amyloid fibril deposition and oxidative stress. The antioxidant enzyme catalase is a neuroprotective amyloid binding protein. Herein the effects of catalase overexpression in SH-SY5Y neuronal cells on the toxicity of amyloid-β (Aβ), amyloid-Bri (ABri), amyloid-Dan (ADan), amylin (IAPP), and prion protein (PrP) peptides were determined. Results showed catalase overexpression was neuroprotective against Aβ, ABri, ADan, IAPP, and PrP peptides. The catalase inhibitor 3-amino-1,2,4-triazole (3-AT) and catalase-amyloid interaction inhibitor benzothiazole aniline tetra(ethylene glycol) (BTA-EG4) significantly enhanced neurotoxicity of amyloid peptides in catalase overexpressing neuronal cells. This suggests catalase neuroprotection involves breakdown of hydrogen peroxide (H2O2) plus a direct binding interaction between catalase and the Aβ, ABri, ADan, IAPP, and PrP peptides. Kisspeptin 45–50 had additive neuroprotective actions against the Aβ peptide in catalase overexpressing cells. The effects of 3-AT had an intracellular site of action, while catalase-amyloid interactions had an extracellular component. These results suggest that the 3-AT and BTA-EG4 compounds may be able to inhibit endogenous catalase mediated neuroprotection. Use of BTA-EG4, or compounds that inhibit catalase binding to amyloid peptides, as potential therapeutics for Neurodegenerative diseases may therefore result in unwanted effects

    Kisspeptin Prevention of Amyloid-β Peptide Neurotoxicityin Vitro

    No full text
    Alzheimer’s disease (AD) onset is associated with changes in hypothalamic-pituitary–gonadal (HPG) function. The 54 amino acid kisspeptin (KP) peptide regulates the HPG axis and alters antioxidant enzyme expression. The Alzheimer’s amyloid-β (Aβ) is neurotoxic, and this action can be prevented by the antioxidant enzyme catalase. Here, we examined the effects of KP peptides on the neurotoxicity of Aβ, prion protein (PrP), and amylin (IAPP) peptides. The Aβ, PrP, and IAPP peptides stimulated the release of KP and KP 45–54. The KP peptides inhibited the neurotoxicity of Aβ, PrP, and IAPP peptides, via an action that could not be blocked by kisspeptin-receptor (GPR-54) or neuropeptide FF (NPFF) receptor antagonists. Knockdown of KiSS-1 gene, which encodes the KP peptides, in human neuronal SH-SY5Y cells with siRNA enhanced the toxicity of amyloid peptides, while KiSS-1 overexpression was neuroprotective. A comparison of the catalase and KP sequences identified a similarity between KP residues 42–51 and the region of catalase that binds Aβ. The KP peptides containing residues 45–50 bound Aβ, PrP, and IAPP, inhibited Congo red binding, and were neuroprotective. These results suggest that KP peptides are neuroprotective against Aβ, IAPP, and PrP peptides via a receptor independent action involving direct binding to the amyloid peptides
    corecore