2,114 research outputs found

    An analysis of the elastic properties of a porous aluminium oxide ïŹlm by means of indentation techniques

    Get PDF
    The elastic modulus of thin ïŹlms can be directly determined by instrumented indentation when the indenter penetration does not exceed a fraction of the ïŹlm thickness, depending on the mechanical properties of both ïŹlm and substrate. When it is not possible, application of models for separating the contribution of the substrate is necessary. In this work, the robustness of several models is analyzed in the case of the elastic modulus determination of a porous aluminium oxide ïŹlm produced by anodization of an aluminium alloy. Instrumented indentation tests employing a Berkovich indenter were performe data nanometric scale, which allowed a direct determination of the ïŹlm elastic modulus, whose value was found to be approximately 11 GPa. However, at a micrometric scale the elastic modulus tends toward the value corresponding to the substrate, of approximately 73 GPa. The objective of the present work is to apply different models for testing their consistency over the complete set of indentation data obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation. This approach shows the continuity between the two scales of measurement thus allowing a better representation of the elastic modulus variation between two limits corresponding to the substrate and ïŹlm elastic moduli. Gao's function proved to be the best to represen the elastic modulus variation

    Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb−1 of pp collisions at s=13TeV with the ATLAS experiment

    Get PDF
    A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb−1 of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5)
    • 

    corecore