21 research outputs found

    Energy Optimization of ZigBee Based WBAN for Patient Monitoring

    Get PDF
    AbstractThis paper proposes an energy efficient wireless telemonitoring scenario of cardiac patients through ZigBee, based on variable duty cycle being rendered to sensors. In an intra hospital telemedicine scenario, Electrocardiogram (ECG) signals of patients are acquired through ECG sensor nodes having transmission capability and these ECG signals are received by Personal Digital Assistant (PDA) kept at nursing station through ZigBee network. ECG signals are further transmitted to Doctor's PDA. If the duty cycle is varied as per the load or number of active sensors, total energy consumed in idle mode can be avoided and total energy consumed by sensors is reduced hence increasing total network lifetime. This paper, comparatively analyzes the energy efficiency of ZigBee sensors with different percentage of duty cycle on the basis of energy consumption parameter under variable load conditions. The matrices used in performance evaluation are energy consumption in transmit mode, energy consumption in received mode and energy consumption in idle mode using Qualnet 5.0.2 simulator

    Synthesis, characterization and application of biodegradable polymer grafted novel bioprosthetic tissue

    No full text
    <p>Animal tissue has an extended history of clinical use in applications like heart valve bioprosthesis devices, cardiovascular surgical applications etc. but often does not last long after implantation in the body due to rapid unwanted degradation. The goal of this work is to develop novel composite biomaterials by grafting biological tissue with synthetic, biodegradable polymers. In the current research phase, porcine submucosa, ureter and bovine pericardial tissue are grafted with poly DL-lactide (PLA), poly glycolide (PGA) and poly DL-lactide glycolide (PLGA) copolymers. The grafted and control tissues are characterized by FTIR and SEM. The biodegradability of the tissue-graft composite materials is determined by pepsin and collagenase digestion assays, showing it can be tailored by varying the grafted polymer type and amount. The grafted tissues can be tuned for a particular clinical or tissue engineering applications including drug delivery with little or no burst release and sustained/controlled delivery.</p

    Whole transcriptome expression analysis and comparison of two different strains of Plasmodium falciparum using RNA-Seq

    Get PDF
    The emergence and distribution of drug resistance in malaria are serious public health concerns in tropical and subtropical regions of the world. However, the molecular mechanism of drug resistance remains unclear. In the present study, we performed a high-throughput RNA-Seq to identify and characterize the differentially expressed genes between the chloroquine (CQ) sensitive (3D7) and resistant (Dd2) strains of Plasmodium falciparum. The parasite cells were cultured in the presence and absence of CQ by in vitro method. Total RNA was isolated from the harvested parasite cells using TRIzol, and RNA-Seq was conducted using an Illumina HiSeq 2500 sequencing platform with paired-end reads and annotated using Tophat. The transcriptome analysis of P. falciparum revealed the expression of ~5000 genes, in which ~60% of the genes have unknown function. Cuffdiff program was used to identify the differentially expressed genes between the CQ-sensitive and resistant strains. Here, we furnish a detailed description of the experimental design, procedure, and analysis of the transcriptome sequencing data, that have been deposited in the National Center for Biotechnology Information (accession nos. PRJNA308455 and GSE77499)

    Modulation of Radiation Response by the Tetrahydrobiopterin Pathway

    No full text
    Ionizing radiation (IR) is an integral component of our lives due to highly prevalent sources such as medical, environmental, and/or accidental. Thus, understanding of the mechanisms by which radiation toxicity develops is crucial to address acute and chronic health problems that occur following IR exposure. Immediate formation of IR-induced free radicals as well as their persistent effects on metabolism through subsequent alterations in redox mediated inter- and intracellular processes are globally accepted as significant contributors to early and late effects of IR exposure. This includes but is not limited to cytotoxicity, genomic instability, fibrosis and inflammation. Damage to the critical biomolecules leading to detrimental long-term alterations in metabolic redox homeostasis following IR exposure has been the focus of various independent investigations over last several decades. The growth of the “omics” technologies during the past decade has enabled integration of “data from traditional radiobiology research”, with data from metabolomics studies. This review will focus on the role of tetrahydrobiopterin (BH4), an understudied redox-sensitive metabolite, plays in the pathogenesis of post-irradiation normal tissue injury as well as how the metabolomic readout of BH4 metabolism fits in the overall picture of disrupted oxidative metabolism following IR exposure

    Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons.

    No full text
    Several barriers protect the central nervous system (CNS) from pathogen invasion. Yet viral infections of the CNS are common and often debilitating. Understanding how neurotropic viruses co-opt host machinery to overcome challenges to neuronal entry and transmission is important to combat these infections. Neurotropic reovirus disseminates through neural routes and invades the CNS to cause lethal encephalitis in newborn animals. To define mechanisms of reovirus neuronal entry and directional transport, we used primary neuron cultures, which reproduce in vivo infection patterns displayed by different reovirus serotypes. Treatment of neurons with small-molecule inhibitors of different endocytic uptake pathways allowed us to discover that the cellular machinery mediating macropinocytosis is required for reovirus neuronal entry. This mechanism of reovirus entry differs from clathrin-mediated endocytosis, which is used by reovirus to invade non-neuronal cells. Analysis of reovirus transport and release from isolated soma or axonal termini of neurons cultivated in microfluidic devices indicates that reovirus is capable of retrograde but only limited anterograde neuronal transmission. The dynamics of retrograde reovirus movement are consistent with fast axonal transport coordinated by dynein along microtubules. Further analysis of viral transport revealed that multiple virions are transported together in axons within non-acidified vesicles. Reovirus-containing vesicles acidify after reaching the soma, where disassembly of virions and release of the viral core into the cytoplasm initiates replication. These results define mechanisms of reovirus neuronal entry and transport and establish a foundation to identify common host factors used by neuroinvasive viruses. Furthermore, our findings emphasize consideration of cell type-specific entry mechanisms in the tailored design of neurotropic viruses as tracers, oncolytic agents, and delivery vectors

    The designed synthesis, recognition, and possible applications of Zn(III) complex

    No full text
    The structural pressure-induced ionization process is implemented to produce Zn(III) complex for the first time and possible potential applications for technological advances are reported in this article. The inversion of the electron population observed at the ground state of the newly synthesized complex corroborates an unexplored material response property towards electrical and magnetic fields. The first-time report of a true transition metal behavior of zinc fetches new thoughts about zinc-based bio-enzymatic and bio-catalytic processes along with its material applications in untouched files like live cell imaging contrast agents, photocatalytic water splitting, etc. The methodology of the ‘ structural pressure-induced ionization process’ may be implemented for the synthesis of more unusual oxidation states of metals

    Rapamycin-induced modulation of HIV gene transcription attenuates progression of HIVAN

    No full text
    HIV-associated nephropathy (HIVAN) is the manifestation of HIV genes expression by kidney cells in the presence of specific host factors. Recently, rapamycin (sirolimus) has been demonstrated to modulate the progression of HIVAN. We hypothesized that rapamycin would modulate the progression of HIVAN by attenuating HIV genes expression. To test our hypothesis, three weeks old Tg26 mice (n=6) were administered either vehicle or rapamycin (5 mg/kg/day, intraperitoneally) for eight weeks. At the end of experimental period, kidneys were harvested. In in vitro studies, human podocytes were transduced with either HIV-1 (NL4-3) or empty vector (EV), followed by treatment with either vehicle or rapamycin. Total RNA and proteins were extracted from renal tissues/ cellular lysates and HIV gene transcription/translation was measured by real time PCR and Western blotting studies. Renal histological slides were graded for glomerular sclerosis and tubular dilatation with microcyst formation. Rapamycin attenuated both glomerular and tubular lesions in Tg26 mice. Rapamycin decreased transcription of HIV genes both in renal tissues as well as in HIV-1 transduced podocytes. Our data strongly indicate that HIV-1 long terminal repeat-mediated transcriptional activity was targeted by rapamycin. Rapamycin enhanced podocyte NF-kB and CREB activities but then it decreased AP-1 binding activity. Since expression of HIV genes by kidney cells has been demonstrated to be the key factor in the development HIVAN, it appears that rapamycin-induced altered transcription of HIV genes might have partly contributed to its disease modulating effects
    corecore