86 research outputs found

    High-Field MAS Dynamic Nuclear Polarization Using Radicals Created by γ-Irradiation

    Get PDF
    High-field magic angle spinning dynamic nuclear polarization (MAS DNP) is often used to enhance the sensitivity of solid-state nuclear magnetic resonance (ssNMR) experiments by transferring spin polarization from electron spins to nuclear spins. Here, we demonstrate that γ-irradiation induces the formation of stable radicals in inorganic solids, such as fused quartz and borosilicate glasses as well as organic solids such as glucose, cellulose, and a urea/polyethylene polymer. The radicals were then used to polarize 29Si or 1H spins in the core of some of these materials. Significant MAS DNP enhancements (ε) greater than 400 and 30 were obtained for fused quartz and glucose, respectively. For other samples negligible ε were obtained likely due to low concentrations of radicals or the presence of abundant quadrupolar spins. These results demonstrate that ionizing radiation is a promising alternative method for generating stable radicals suitable for high-field MAS DNP experiments

    t1-Noise Eliminated Dipolar Heteronuclear Multiple-Quantum Coherence Solid-State NMR Spectroscopy

    Get PDF
    Heteronuclear correlation (HETCOR) spectroscopy is one of the key tools in the arsenal of the solid-state NMR spectroscopist to probe spatial proximity between two different nuclei and enhance spectral resolution. Dipolar heteronuclear multiple-quantum coherence (D-HMQC) is a powerful technique that can be potentially utilized to obtain 1H detected 2D HETCOR solid-state NMR spectra of any NMR active nucleus. A long-standing problem in 1H detected D-HMQC solid-state NMR experiments is the presence of t1-noise which reduces sensitivity and impedes spectral interpretation. In this contribution, we describe novel pulse sequences, termed t1-noise eliminated (TONE) D-HMQC, that suppress t1-noise and can provide higher sensitivity and resolution than conventional D-HMQC. Monte-Carlo and numerical simulations confirm that t1-noise in conventional D-HMQC primarily occurs because random MAS frequency fluctuations cause variations in the NMR signal amplitude from scan to scan, leading to imperfect cancellation of uncorrelated signals by phase cycling. The TONE D-HMQC sequence uses 1H p-pulses to refocus the evolution of 1H CSA across each recoupling block, improving the stability of the pulse sequence to random MAS frequency fluctuations. The 1H refocusing pulses also restore the orthogonality of in-phase and anti-phase magnetization for all crystallite orientations, enabling the use of 90° flip-back or LG spin-lock trim pulses to reduce the intensity of uncorrelated signals. We demonstrate the application of these methods to acquire detected 2D 1H-35Cl and 1H-13C HETCOR spectra of histidine•HCl•H2O with reduced t1-noise. To show generality, we also apply these methods to obtain 2D 1H-17O spectra of 20%-17O fmoc-alanine and for the first time at natural abundance, 2D 1H-25Mg HETCOR spectra of magnesium hydroxide. The TONE D-HMQC sequences are also used to probe 1H-25Mg and 1H-27Al proximities in Mg-Al layered double hydroxides and confirm the even mixing of Mg and Al in these materials

    High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by γ-Irradiation

    Get PDF
    High-field magic angle spinning dynamic nuclear polarization (MAS DNP) is often used to enhance the sensitivity of solid-state nuclear magnetic resonance experiments by transferring spin polarization from electron spins to nuclear spins. Here, we demonstrate that γ-irradiation induces the formation of stable radicals in inorganic solids, such as fused quartz and borosilicate glasses, as well as organic solids, such as glucose, cellulose, and a urea/polyethylene polymer. The radicals were then used to polarize 29Si or 1H spins in the core of some of these materials. Significant MAS DNP enhancements (ε) of more than 400 and 30 were obtained for fused quartz and glucose, respectively. For other samples, negligible values of ε were obtained, likely due to low concentrations of radicals or the presence of abundant quadrupolar spins. These results demonstrate that ionizing radiation is a promising alternative method for generating stable radicals that are suitable for high-field MAS DNP experiments

    Enhancing the resolution of 1H and 13C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening

    Get PDF
    We demonstrate that natural isotopic abundance 2D heteronuclear correlation (HETCOR) solid-state NMR spectra can be used to significantly reduce or eliminate the broadening of 1H and 13C solid-state NMR spectra of organic solids due to anisotropic bulk magnetic susceptibility (ABMS). ABMS often manifests in solids with aromatic groups, such as active pharmaceutical ingredients (APIs), and inhomogeneously broadens the NMR peaks of all nuclei in the sample. Inhomogeneous peaks with full widths at half maximum (FWHM) of ∼1 ppm typically result from ABMS broadening and the low spectral resolution impedes the analysis of solid-state NMR spectra. ABMS broadening of solid-state NMR spectra has previously been eliminated using 2D multiple-quantum correlation experiments, or by performing NMR experiments on diluted materials or single crystals. However, these experiments are often infeasible due to their poor sensitivity and/or provide limited gains in resolution. 2D 1H–13C HETCOR experiments have previously been applied to reduce susceptibility broadening in paramagnetic solids and we show that this strategy can significantly reduce ABMS broadening in diamagnetic organic solids. Comparisons of 1D solid-state NMR spectra and 1H and 13C solid-state NMR spectra obtained from 2D 1H–13C HETCOR NMR spectra show that the HETCOR spectrum directly increases resolution by a factor of 1.5 to 8. The direct gain in resolution is determined by the ratio of the inhomogeneous 13C/1H linewidth to the homogeneous 1H linewidth, with the former depending on the magnitude of the ABMS broadening and the strength of the applied field and the latter on the efficiency of homonuclear decoupling. The direct gains in resolution obtained using the 2D HETCOR experiments are better than that obtained by dilution. For solids with long proton longitudinal relaxation times, dynamic nuclear polarization (DNP) was applied to enhance sensitivity and enable the acquisition of 2D 1H–13C HETCOR NMR spectra. 2D 1H–13C HETCOR experiments were applied to resolve and partially assign the NMR signals of the form I and form II polymorphs of aspirin in a sample containing both forms. These findings have important implications for ultra-high field NMR experiments, optimization of decoupling schemes and assessment of the fundamental limits on the resolution of solid-state NMR spectra

    ‘Surface Contrast’ NMR reveals non‐innocent role of support in Pd/CeO2 catalyzed phenol hydrogenation

    Get PDF
    Ceria (CeO 2 )‐supported metals are widely used as catalysts because of their exceptional redox properties. Here, we use surface contrast NMR methods to investigate the hydrogenation of phenol by Pd supported on ceria nanoparticles. We show that the rigid and planar binding of phenol to Pd is mediated by a weak and highly mobile association of the small molecule to ceria. Interestingly, while addition of phosphate to the mixture does not perturb the adsorption of phenol on Pd, it destabilizes its interaction with ceria and proportionally decreases the rate of catalytic conversion. Our data provide strong experimental evidence that weak interactions between adsorbate and ceria are catalytically competent, and explain the exceptional performance of Pd/CeO 2 for reductive conversions under mild reaction conditions

    Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy

    Get PDF
    Synthetic efforts to prepare indium phosphide (InP) quantum dots (QDs) have historically generated emissive materials with lower than unity quantum yields. This property has been attributed to structural and electronic defects associated with the InP core as well as the chemistry of the shell materials used to overcoat and passivate the InP surface. Consequently, the uniformity of the core–shell interface plays a critical role. Using X-ray emission spectroscopy (XES) performed with a recently developed benchtop spectrometer, we studied the evolution of oxidized phosphorus species arising across a series of common, but chemically distinct, synthetic methods for InP QD particle growth and subsequent ZnE (E = S or Se) shell deposition. XES afforded us the ability to measure the speciation of phosphorus reliably, quantitatively, and more efficiently (with respect to both the quantity of material required and the speed of the measurement) than with traditional techniques, i.e., X-ray photoelectron spectroscopy and magic angle spinning solid state nuclear magnetic resonance spectroscopy. Our findings indicate that even with deliberate care to prevent phosphorus oxidation during InP core synthesis, typical shelling approaches unintentionally introduce oxidative defects at the core–shell interface, limiting the attainable photoluminescence quantum yields
    corecore