36 research outputs found

    SMART-KG: Hybrid Shipping for SPARQL Querying on the Web

    Get PDF
    While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL) querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such open, decentralized KGs is often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pattern Fragments (TPF) attempt to tackle the problem of availability by pushing query processing workload to the client side, but suffer from unnecessary transfer of irrelevant data on complex queries with large intermediate results. In this paper we present smart-KG, a novel approach to share the load between servers and clients, while significantly reducing data transfer volume, by combining TPF with shipping compressed KG partitions. Our evaluations show that outperforms state-of-the-art client-side solutions and increases server-side availability towards more cost-effective and balanced hosting of open and decentralized KGs.Series: Working Papers on Information Systems, Information Business and Operation

    Towards Making Distributed RDF processing FLINker

    Get PDF
    In the last decade, the Resource Description Framework (RDF) has become the de-facto standard for publishing semantic data on the Web. This steady adoption has led to a significant increase in the number and volume of available RDF datasets, exceeding the capabilities of traditional RDF stores. This scenario has introduced severe big semantic data challenges when it comes to managing and querying RDF data at Web scale. Despite the existence of various off-the-shelf Big Data platforms, processing RDF in a distributed environment remains a significant challenge. In this position paper, based on an indepth analysis of the state of the art, we propose to manage large RDF datasets in Flink, a well-known scalable distributed Big Data processing framework. Our approach, which we refer to as FLINKer extends the native graph abstraction of Flink, called Gelly, with RDF graph and SPARQL query processing capabilities

    Privacy-aware Linked Widgets

    Get PDF
    The European General Data Protection Regulation (GDPR) brings new challenges for companies, who must demonstrate that their systems and business processes comply with usage constraints specified by data subjects. However, due to the lack of standards, tools, and best practices, many organizations struggle to adapt their infrastructure and processes to ensure and demonstrate that all data processing is in compliance with users' given consent. The SPECIAL EU H2020 project has developed vocabularies that can formally describe data subjects' given consent as well as methods that use this description to automatically determine whether processing of the data according to a given policy is compliant with the given consent. Whereas this makes it possible to determine whether processing was compliant or not, integration of the approach into existing line of business applications and ex-ante compliance checking remains an open challenge. In this short paper, we demonstrate how the SPECIAL consent and compliance framework can be integrated into Linked Widgets, a mashup platform, in order to support privacy-aware ad-hoc integration of personal data. The resulting environment makes it possible to create data integration and processing workflows out of components that inherently respect usage policies of the data that is being processed and are able to demonstrate compliance. We provide an overview of the necessary meta data and orchestration towards a privacy-aware linked data mashup platform that automatically respects subjects' given consents. The evaluation results show the potential of our approach for ex-ante usage policy compliance checking within the Linked Widgets Platforms and beyond

    Nursing Perspectives on the Association between Human Capital Development and the Work Engagement: A Cross-Sectional Study

    Get PDF
    This study examined the impact of human capital development on the nurses’ work engagement. A questionnaire was adapted and distributed to a nursing convenience sample in different types of hospitals. The sample size was 286 male and female nurses who completed it. Structural Equation Modelling (SEM) was used to test the research hypothesis. Results revealed that human capital development had a direct impact on the nursing work engagement. Nursing work engagement give managers ability to improve the work environment, increase the work professional and institutional loyalty. Supporting the human capital development tools is very important for any healthcare organization

    Using an Extended Technology Acceptance Model to Uncover Variables Influencing Physicians’ Use Of EHR in Jordan: Insights from Alberta, Canada

    Get PDF
    Adoption rates for electronic health records (EHR) remain low in developing nations, even though health information technologies undoubtedly enhance the quality of service delivery and healthcare institutions’ overall efficiency. In this research, researchers employed a technology acceptance integrated model to analyze what factors are most important in encouraging physicians in Jordan to adopt EHR. This framework was created after a thorough review of the relevant literature and with input from physicians in Alberta, Canada, a province with an openly disclosed high rate of electronic health record adoption. To achieve its aim, the present study used a quantitative correlational research strategy. Data were acquired from a convenient sample size of 413 web-based survey participants recruited from the target population of physicians practicing in the public and private healthcare sectors in Jordan. The study’s hypotheses were tested with structural equation modeling. Physicians’ behavioral intentions were shown to be strongly predicted by factors including perceived usefulness, perceived ease of use, perceived ’privacy and security,’ financial incentives, and self-efficacy, which collectively accounted for 57.8% of the total variance in behavioral intention. Perceived usefulness had the highest influence on intentions, followed by self-efficacy, perceived ”privacy and security,” and perceived ease of use, with financial incentives having the smallest impact on intentions. Accordingly, healthcare practitioners must consider these variables while developing and validating interpretations about HER adoption. This study concludes with several implications for healthcare directors, policymakers, and providers of health information systems, in addition to suggestions for future research areas

    User consent modeling for ensuring transparency and compliance in smart cities

    Get PDF
    Smart city infrastructures such as transportation and energy networks are evolving into so-called cyber physical social systems (CPSSs), which collect and leverage citizens’ data in order to adapt services to citizens’ needs. The privacy implications of such systems are, however, significant and need to be addressed. Current systems either try to escape the privacy challenge via anonymization or use very rigid, hard-coded workflows that have been agreed with a data protection authority. In the case of the latter, there is a severe impact on data quality and richness, whereas in the former, only these hard-coded flows are permitted resulting in diminished functionality and potential. We address these limitations via user modeling in terms of investigating how to model and semantically represent user consent, preferences, and data usage policies that will guide the processing of said data in the data lake. Data protection is a horizontal field and consequently very wide. Therefore, we focus on a concrete setting where we extend the domain-agnostic SPECIAL policy language for a smart mobility use case supplied by Vienna’s largest utility provider. To that end, (1) we create an extension of SPECIAL in terms of a core CPSS vocabulary that lowers the semantic gap between the domain agnostic terms of SPECIAL and the vocabulary of the use case; (2) we propose a workflow that supports defining domain-specific vocabularies for complex CPSSs; and (3) show that these two contributions allow successfully achieving the goals of our setting

    The CitySPIN Platform: A CPSS Environment for City-Wide Infrastructures

    Get PDF
    Cyber-physical Social System (CPSS) are complex systems that span the boundaries of the cyber, physical and social spheres. They play an important role in a variety of domains ranging from industry to smart city applications. As such, these systems necessarily need to take into account, combine and make sense of heterogeneous data sources from legacy systems, from the physical layer and also the social groups that are part of/use the system. The collection, cleansing and integration of these data sources represents a major effort not only during the operation of the system, but also during its engineering and design. Indeed, while ongoing efforts are concerned primarily with the operation of such systems, limited focus has been put on supporting the engineering phase of CPSS. To address this shortcoming, within the CitySPIN project we aim to create a platform that supports stakeholders involved in the design of these systems especially in terms of support for data management. To that end, we develop methods and techniques based on Semantic Web and Linked Data technologies for the acquisition and integration of heterogeneous data from disparate structured, semi-structured and unstructured sources, including open data and social data. In this paper we present the overall system architecturewith a core focus on data acquisition and integration.We demon-strate our approach through a prototypical implementation of an adaptive planning use case for public transportation scheduling

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore