22 research outputs found

    Rigorous Time/Space Trade-offs for Inverting Functions

    No full text

    Matching nuts and bolts (Extended Abstract)

    No full text
    We describe a procedure which may be helpful to any disorganized carpenter who has a mixed pile of bolts and nuts and wants to find the corresponding pairs of bolts and nuts. The procedure uses our (and the carpenter’s) ability to construct efficiently highly expanding graphs. The problem considered is given a collection of n bolts of distinct widths and n nuts such that there is a 1-1 correspondence between the nuts and bolts. The goal is to find for each bolt its corresponding nut by comparing nuts to bolts but not nuts to nuts or bolts to bolts. Our objective is to minimize the number of operations of this kind (as well as the total running time). The problem has a randomized algorithm similar to Quicksort. Our main result is an n(log n) O(1)

    Matching Nuts and Bolts (Extended Abstract)

    No full text
    We describe a procedure which may be helpful to any disorganized carpenter who has a mixed pile of bolts and nuts and wants to find the corresponding pairs of bolts and nuts. The procedure uses our (and the carpenter's) ability to construct efficiently highly expanding graphs. The problem considered is given a collection of n bolts of distinct widths and n nuts such that there is a 1-1 correspondence between the nuts and bolts. The goal is to find for each bolt its corresponding nut by comparing nuts to bolts but not nuts to nuts or bolts to bolts. Our objective is to minimize the number of operations of this kind (as well as the total running time)

    Random Forest Algorithm Improves Detection of Physiological Activity Embedded within Reflectance Spectra Using Stomatal Conductance as a Test Case

    No full text
    Plants transpire water through their tissues in order to move nutrients and water to the cells. Transpiration includes various mechanisms, primarily stomata movement, which controls the rate of CO2 and water vapor exchange between the tissues and the atmosphere. Assessment of stomatal conductance is available for gas exchange techniques at leaf level, yet these techniques are not scalable to the whole plant let alone a large vegetation area. Hyperspectral reflectance spectroscopy, which acquires hundreds of bands in a single scan, may capture a glimpse of the crop’s physiological activity and therefore meet the scalability challenge. In this study, classic chemometric analyses are used alongside advanced statistical learning algorithms in order to identify stomatal conductance cues in hyperspectral measurements of cotton plants experiencing a gradient of irrigation. Random forest of regression trees identified 23 wavelengths related to both structural properties of the plant as well as water content. Partial least squares regression succeeded in relating these wavelengths to stomatal conductance, but only partially (R2 < 0.2). An artificial neural network algorithm reported an R2 = 0.54 with an 89% error-free performance on the same data subset. This study discusses implementation of machine learning methodologies as a benchmark for deeper analysis of spectral information, such as required when searching for plant physiology-related attenuations embedded within reflectance spectra
    corecore