6,147 research outputs found

    Zenithal bistable device: comparison of modeling and experiment

    Get PDF
    A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined. Analytical approximation highlights a route to optimize material selection in terms of latching voltages and the numerical model, which includes an accurate surface representation, recovers the complex surface shape effects. Predictions of device performance are presented as a function of both surface anchoring strength and surface shape and grating pitch. A measurement of the homeotropic anchoring energy has been undertaken by comparing the voltage response as a function of cell gap; we find the homeotropic anchoring energies can be varied in the range 0.5 to 4 (10-44 J m-2)

    Quasi-Normal Modes of a Schwarzschild White Hole

    Full text link
    We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein vacuum equations within a Bondi-Sachs, or null cone, formalism. We develop a numerical method to calculate the quasi-normal modes, and present results for the case =2\ell=2. The values obtained are different to those of a Schwarzschild black hole, and we interpret them as quasi-normal modes of a Schwarzschild white hole.Comment: 5 pages, 4 Figure

    Proteins and polymers

    Full text link
    Proteins, chain molecules of amino acids, behave in ways which are similar to each other yet quite distinct from standard compact polymers. We demonstrate that the Flory theorem, derived for polymer melts, holds for compact protein native state structures and is not incompatible with the existence of structured building blocks such as α\alpha-helices and β\beta-strands. We present a discussion on how the notion of the thickness of a polymer chain, besides being useful in describing a chain molecule in the continuum limit, plays a vital role in interpolating between conventional polymer physics and the phase of matter associated with protein structures.Comment: 7 pages, 6 figure

    The Autism Related Protein Contactin-Associated Protein-Like 2 (CNTNAP2) Stabilizes New Spines: An In Vivo Mouse Study.

    Get PDF
    The establishment and maintenance of neuronal circuits depends on tight regulation of synaptic contacts. We hypothesized that CNTNAP2, a protein associated with autism, would play a key role in this process. Indeed, we found that new dendritic spines in mice lacking CNTNAP2 were formed at normal rates, but failed to stabilize. Notably, rates of spine elimination were unaltered, suggesting a specific role for CNTNAP2 in stabilizing new synaptic circuitry

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    A Superwind from Early Post-Red Giant Stars?

    Get PDF
    We suggest that the gap observed at 20,000 K in the horizontal branches of several Galactic globular clusters is caused by a small amount of extra mass loss which occurs when stars start to "peel off" the red giant branch (RGB), i.e., when their effective temperature starts to increase, even though they may still be on the RGB. We show that the envelope structure of RGB stars which start to peel off is similar to that of late asymptotic giant branch stars known to have a super-wind phase. An analogous super-wind in the RGB peel-off stars could easily lead to the observed gap in the distribution of the hottest HB stars.Comment: 9 pages; Accepted by ApJ Letters; Available also at http://www.astro.puc.cl/~mcatelan

    Neutron transition strengths of 21+2^+_1 states in the neutron rich Oxygen isotopes determined from inelastic proton scattering

    Full text link
    A coupled-channel analysis of the 18,20,22^{18,20,22}O(p,p)(p,p') data has been performed to determine the neutron transition strengths of 21+^+_1 states in Oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and \emph{isospin} dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hatree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0\delta_0) and isovector (δ1\delta_1) deformation lengths of 21+^+_1 states in 18,20,22^{18,20,22}O have been extracted from the folding model analysis of the (p,p)(p,p') data. A specific NN-dependence of δ0\delta_0 and δ1\delta_1 has been established which can be linked to the neutron shell closure occurring at NN approaching 16. The strongest isovector deformation was found for 21+^+_1 state in 20^{20}O, with δ1\delta_1 about 2.5 times larger than δ0\delta_0, which indicates a strong core polarization by the valence neutrons in 20^{20}O. The ratios of the neutron/proton transition matrix elements (Mn/MpM_n/M_p) determined for 21+^+_1 states in 18,20^{18,20}O have been compared to those deduced from the mirror symmetry, using the measured B(E2)B(E2) values of 21+^+_1 states in the proton rich 18^{18}Ne and 20^{20}Mg nuclei, to discuss the isospin impurity in the 21+2^+_1 excitation of the A=18,T=1A=18,T=1 and A=20,T=2A=20,T=2 isobars.Comment: Version accepted for publication in Physical Review

    Carbon Concentration Dependence of the Superconducting Transition Temperature and Structure of MgCxNi3

    Full text link
    The crystal structure of the superconductor MgCxNi3 is reported as a function of carbon concentration determined by powder neutron diffraction. The single-phase perovskite structure was found in only a narrow range of carbon content, 0.88 < x < 1.0. The superconducting transition temperature was found to decrease systematically with decreasing carbon concentration. The introduction of carbon vacancies has a significant effect on the positions of the Ni atoms. No evidence for long range magnetic ordering was seen by neutron diffraction for carbon stoichiometries within the perovskite phase stability range.Comment: 4 figure
    corecore